Programa de Capacitación en Energías Renovables

ONUDI
Observatorio de Energía Renovable para América Latina y Caribe

Energía Solar Fotovoltaica
Energía Solar Fotovoltaica

Objetivos del Módulo

La electricidad producida con energía solar Fotovoltaica ha continuado su notable crecimiento durante el año 2011, a pesar de la crisis financiera que afecta a algunos de los países productores de dispositivos fotovoltaicos. Es de esperar que este fuerte crecimiento continúe a medio y largo plazo, promovido en gran parte por la apertura de nuevos mercados, tal y como ha ocurrido en Europa hasta el momento. En el presente escenario, el adiestramiento de personal cualificado es una actividad fundamental para promover el desarrollo de la energía fotovoltaica en América Latina y el Caribe, e incrementar la capacidad de producción instalada. El presente curso está dividido en 5 lecciones que se ocupan en detalle de los fundamentos, dimensionado y operación de los sistemas fotovoltaicos. Los estudiantes tendrán acceso a material básico de estudio. Cada lección se complementa con actividades prácticas, ejercicios de auto evaluación y un test final para cada lección, estando este material orientado a los países de América Latina y el Caribe.

Los principales objetivos del presente módulo son:

-Permitir al estudiante entender los principios básicos de la conversión fotovoltaica es decir, como es posible transformar la energía del Sol en electricidad y los elementos clave necesarios para efectuar tal transformación.

-Conocer los principales componentes de los sistemas fotovoltaicos aislados y pequeñas redes (mini-grids), sus aplicaciones y dimensionado básico.

-Explicar los principios y conceptos básicos de la radiación solar y su influencia en la conversión energética.

-Conocer los principales componentes de los sistemas fotovoltaicos conectados a la red eléctrica y estimar y simular la producción eléctrica de estos sistemas.
Capítulo 1. Fundamentos de la conversión fotovoltaica. Células, módulos y generadores fotovoltaicos.

Este capítulo presenta la introducción a la tecnología fotovoltaica (FV) y su fundamento. Se comenzará con una presentación de la situación de la energía solar fotovoltaica en el contexto de las energías renovables, para pasar a continuación a describir los fundamentos de la conversión fotovoltaica y un resumen de las diferentes tecnologías de células y módulo, y los parámetros de funcionamiento del módulo fotovoltaico. Finalmente se darán unos pequeños apuntes de los sistemas de concentración, dadas sus especiales características.

La energía fotovoltaica en el marco del resto de las energías renovables.

Situación en el mundo

Las energías renovables han ido incrementando paulatinamente su tasa de mercado, con un crecimiento rápido y sostenido desde 2006 hasta 2011. Se estima que a finales de 2011 los 5360GW de capacidad instalada con energías renovables constituían un 25% de la capacidad global de generación, suministrando un 20.3% de la electricidad global. La energía solar fotovoltaica ha crecido de una manera más rápida que otras fuentes de energías renovables durante este periodo, con una tasa media de crecimiento del 58% anual.

Le siguen la energía solar térmica de concentración, con un crecimiento de casi el 37%, y la energía eólica con un aumento del 26% (ver Ilustración 2). En términos de capacidad total instalada, la fotovoltaica ocupa el tercer lugar entre las fuentes de energías renovables, tras la hidroeléctrica y energía eólica.

El espectacular crecimiento de la potencia fotovoltaica instalada en los últimos años ha superado todas las previsiones, incluso las más optimistas, demostrando el potencial de esta tecnología como fuente de energía en todo el mundo. El examen de los gráficos de evolución de la capacidad instalada anualmente y acumulada (presentados en las ilustraciones 2 y 3) resulta sorprendente, por el continuo crecimiento experimentado. Si bien en algunos años y debido a fluctuaciones en el mercado y a las variaciones en las condiciones de las tarifas del régimen especial para este tipo de tecnologías, el crecimiento ha sido extraordinario y quizás anormalmente elevado, la estabilización producida a continuación, y el crecimiento posterior auguran la continuidad en la expansión del mercado. Ha de mencionarse, así mismo, que la mayor parte de la potencia instalada corresponde a instalaciones conectadas a red, contando con un 98% de la capacidad global, aunque hay un interés reciente en las instalaciones aisladas y sistemas de pequeña escala principalmente en áreas remotas de difícil acceso y en países en vías de desarrollo.

El despliegue tecnológico que hizo posible el desarrollo de esta fuente energética fue posible por la confluencia de varios factores: por un lado la madurez tecnológica de todos los componentes del sistema, unida al crecimiento de la capacidad global de fabricación, a los programas de fomento de algunos países, especialmente europeos, y a otros factores coyunturales como el elevado precio del petróleo y la facilidad para conseguir financiación para este tipo de tecnología. Aunque se esperaba cierta ralentización, la inclusión de mercados emergentes fuera de Europa, con el incremento de países que superan el MW instalado, hace prever que este crecimiento continuará por la expansión de estos mercados hasta que finalmente se llegue a la paridad con la red eléctrica, es decir, el momento en que esta fuente de energía compita con el resto de las energías en el mercado eléctrico.

Resulta interesante así mismo comprobar la evolución de la fabricación de células solares en el mundo, junto con su distribución geográfica, que se presenta en la Ilustración 4. El rápido crecimiento hizo que se desarrollaran nuevos mercados, hasta el punto que según los datos de 2011, hay una dominancia del mercado asiático en cuanto a la fabricación de células, especialmente de China. Si en 2006 los principales productores de células eran Japón, con un 37% del total, y Europa con un 28%, en 2008 China ya producía un 32.7 % (una de cada tres células), y en 2011 llegaba al 57%.

Finalmente, en esta rápida visión de la evolución del mercado mundial no podemos dejar de mostrar los gráfico evolutivos tecnologías de célula (los fundamentos de cada tecnología serán explicados en capítulos posteriores dentro de este módulo). Tradicionalmente la tecnología de silicio cristalino ha sido, y sigue siendo, la tecnología dominante en cuanto a fabricación de módulos.
Sin embargo, en la actualidad existen otros mercados, sobre todo de diversas tecnologías de lámina delgada, que han alcanzado así mismo su madurez tecnológica y van aumentando poco a poco su cota de mercado. Entre ellos destacan los módulos con células de TeCd, que llegaron a un 9% del mercado total en 2009, con una empresa fabricante de esta tecnología en el puesto nº 1 en producción mundial durante algunos años, los módulos con células de seleniuro de cobre e indio (CIS), las tecnologías de híbridas de silicio amorfo y microamorfo, etc. La Ilustración 5 nos muestra esta evolución.
Posibilidades en Latinoamérica y Caribe

El intenso desarrollo experimentado por la energía solar fotovoltaica en Europa y otras regiones podría ser extrapolado hacia Latinoamérica y Caribe en los próximos años, ya que estos países tienen unas condiciones muy ventajosas para la aplicación de este tipo de fuente energética. El potencial FV en estas zonas es enorme, debido a que la mayoría disponen de más cantidad de radiación solar que los países europeos, que son los que por el momento cuentan con más capacidad instalada, encontrándose dentro de lo que se ha denominado el “cinturón solar”1, área del planeta con mayor cantidad de radiación solar. Si se evalúa la irradiación media de los países del sur de Europa (considerando como tales Malta, Chipre, Grecia, Italia, España y Portugal), se obtendría un valor aproximado2 de 1826 kWh/m² por año. Pues bien, la mayoría de los países a los que va dirigido este curso estarían por encima de 1900 kWh/m², y muchos de ellos por encima de 2000 e incluso algunos superan los 2100 kWh/m². Hay que tener en cuenta que estos datos son aproximados, calculados como la irradiación anual en la capital del país. En el apartado de radiación solar se mostrará una explicación más detallada de todos los conceptos relacionados con este tema en referencia a las aplicaciones fotovoltaicas, mostrándose mapas mundiales representativos.

Además de la disposición de luz solar, los continuos avances en todos los componentes de esta tecnología han hecho que el coste de los sistemas FV vaya decreciendo a través de los años. Es de esperar que este decrecimiento continúe hasta un 40% en 2015 y cerca del 60% en 2020 según los analistas.

El potencial de Latinoamérica y Caribe como escenario próximo para la implantación de la energía FV a mayor escala fomentó la realización de varios estudios que tenían como objetivo evaluar el potencial FV en estos países y el atractivo como inversión (ver nota al pie en la página anterior). Aunque las cifras pueden variar, e históricamente las previsiones en cuanto a potencia FV han sido siempre superadas con creces, los mencionados informes apuntan hacia una potencia instalada de 56MW, y un potencial FV para 2020 de 13 GW y para 2030 de 48GW si se produjera el escenario acelerado en Latinoamérica (el informe EPIA, distingue entre tres escenarios, el escenario base, el acelerado, y el que supondría un cambio de paradigma). Así mismo, se destacan por el momento como países con mayor cantidad de potencia FV instalada México, Perú, Chile, Argentina y Brasil.

1 Es interesante echar un vistazo al informe: Unlocking the sunbelt potencial for photovoltaics. EPIA, March 2011, que presenta diversos escenarios de futuro para el desarrollo de la energía fotovoltaica en los países de gran irradiación solar.

El efecto Fotovoltaico. La célula solar

El fundamento de la conversión de la energía del sol en energía eléctrica radica en el *Efecto Fotovoltaico*, descubierto por Becquerel en 1839 al observar que ciertos materiales, al ser expuestos a la luz, eran capaces de producir una corriente eléctrica. Sin embargo, no fue hasta 1954 cuando se produjo la primera célula fotovoltaica con una eficiencia de conversión aceptable (Chapin, 1954, célula del 6%). En los años 1950-70 se iniciaron las investigaciones intensivas en este área, especialmente para aplicaciones espaciales. El gran cambio se produjo a partir de los 70, motivado en parte por la primera la crisis energética internacional, que fomentó un intento de diversificación de las fuentes energéticas y promovió la investigación y desarrollo de la energía FV como fuente energética.

El elemento fundamental en la conversión FV es la **CÉLULA SOLAR**. En determinados materiales semiconductores, los fotones de la radiación solar son capaces de transmitir su energía a los electrones de valencia del semiconductor, haciendo posible la ruptura de sus enlaces de manera que estos quedan libres y puedan desplazarse en el material. La ausencia de un electrón por la ruptura de un enlace se denomina **hueco**, y también puede desplazarse a través del semiconductor. Por tanto las propiedades de conducción eléctrica de un semiconductor se deben tanto al movimiento de los electrones como al movimiento de los huecos denominándose a ambos, de manera genérica, **portadores de carga**.

El movimiento de los electrones y huecos en direcciones opuestas genera una corriente eléctrica en el semiconductor, que sería aprovechable por un circuito externo. Con el fin de separar los huecos y electrones para que no se restablezca el enlace, se utiliza un campo eléctrico, que obliga a la circulación de ambas cargas en sentidos opuestos. Una célula solar no es más que un semiconductor preparado de manera que pueda extraerse la circulación de corriente en el mismo hacia un circuito externo. A continuación describiremos la estructura convencional de la célula solar, y las diferentes tecnologías existentes en la actualidad.

Estructura de la célula solar

La estructura típica de la célula solar, junto con su principio de funcionamiento, se muestra en la Ilustración 6. El material de base es el silicio, y el campo eléctrico se consigue introduciendo impurezas de manera controlada (dopado) con materiales que presenten exceso o defecto de electrones con respecto al silicio. Así, si en uno de los lados de la célula introducimos átomos donadores, es decir con exceso de electrones, como podría ser el fósforo, obtendríamos lo que se llama la capa n de la célula, es decir, una zona con densidad de electrones mayor. Si en el otro lado introducimos átomos aceptadores, es decir, con defecto de electrones como podría ser el boro, obtendríamos una zona con densidad de huecos mayor que el resto del dispositivo. La diferencia de concentraciones entre electrones y huecos crea un campo eléctrico, y el conjunto así formado se denomina unión p-n. La mayoría de las células solares están formadas a partir de una unión p-n, a la que se añaden unos contactos metálicos para poder extraer la corriente hacia el exterior. El resto de elementos que aparecen en la ilustración 6 son:
Capa antireflexiva (AR). Se diseña con objeto de reducir las *pérdidas por reflexión* superficial, con una reflectancia mínima a cierta longitud de onda.

Malla de metalización. Se prepara de manera que permita la colección adecuada de electrones introduciendo una resistencia mínima, y además teniendo en cuenta que debe permitir el mayor paso posible de luz hacia el interior del dispositivo. La estructura más empleada es la que se muestra en el dibujo, en forma de peine.

Las capas activas del semiconductor, el emisor o capa n, y la base o capa p. como puede observarse el grosor del emisor es mucho menos que el de la base. El grosor de las células solares ha ido disminuyendo con el tiempo, pero pueden considerarse valores típicos esperos de células entre 250 y 350 µm.

El contacto metálico posterior, que normalmente se realiza en toda la superficie de la célula.

Principio de funcionamiento

Cuando la luz solar incide sobre la superficie de la célula, si esta se encuentra conectada a una carga como se muestra en la parte derecha de la Ilustración 7, se producirá una diferencia de potencial en dicha carga, y por tanto una circulación de corriente desde el terminal positivo hasta el terminal negativo de la célula. No todos los fotones de la radiación solar son capaces de generar pares electrón-hueco, sólo lo hacen aquellos que tienen una energía igual o superior al *gap* E_g de energía del material (ancho de la banda prohibida). Este valor es típico y característico de cada material semiconductor. Resumiendo, los fenómenos que ocurren son:

- Los fotones con energía igual o superior a E_g pueden ser absorbidos y producir pares electrón-hueco que, a su vez, pueden actuar como portadores de corriente.\(^3\)

\(^3\) No todos los fotones con energía igual o superior al gap son absorbidos, ya que hay una parte que pueden atravesar el dispositivo debido al valor finito del coeficiente de absorción y de la anchura del semiconductor. Las pérdidas debidas a este fenómeno se denominan pérdidas de transmisión.

Ilustración 6. Estructura típica de la célula solar (izquierda) y principio de funcionamiento (derecha).
El campo eléctrico separa los portadores antes de que se vuelvan a recombinar, causando la circulación de corriente que suministra energía a la carga.

- Se producen fenómenos de inyección y recombinación de pares electrón-hueco, causando así las pérdidas de recombinación en la célula FV.

Teniendo esto en cuenta, la corriente generada por la célula solar sería la diferencia entre la corriente fotogenerada \(I_L \), debida a la generación de portadores producida por la iluminación, y lo que se llama corriente de diodo \(I_D \) o de oscuridad, debida a la recombinación de portadores producida por el voltaje externo.

\[
I = I_L - I_D(V) \quad (1)
\]

Desarrollando el término de la corriente de oscuridad según la teoría de Shockley, la ecuación (1) quedaría como:

\[
I = I_L - I_0 \exp \left(-\frac{V}{mV_t} \right) \quad (2)
\]

Donde \(I_0 \) es la corriente inversa de saturación del diodo, \(V_t \) es el voltaje térmico \((V_t=kT/e)\) siendo \(k \) la constante de Boltzmann, \(T \) la temperatura en grados Kelvin y \(e \) la carga del electrón) y \(m \) el factor de idealidad del diodo. De acuerdo con la teoría de Shockley, que supone que la recombinación se produce principalmente por difusión de minoritarios, \(m \) debería tener un valor igual a 1. Pronto se observó que muchos diodos de silicio solares tenían un valor de \(m > 1 \) que no concordaba con la teoría de la difusión. El uso de un parámetro \(m \) ajustable a cada caso particular, trata de integrar, en un modelo simple, las desviaciones respecto al caso ideal.

Esta ecuación sería la que correspondería al dispositivo ideal, aplicable tanto para células como para módulos. Sin embargo, existen unos efectos, denominados extrínsecos, tales como las caídas de voltaje asociadas al movimiento de portadores desde el lugar en que se generan hasta los contactos (emisor, base, malla metálica, superficie de contacto, etc.), materializados mediante una resistencia serie externa \(R_s \), y las corrientes de fuga que pueden afectar a la característica, materializadas mediante una resistencia paralelo \(R_{sh} \). En el apartado “Ec. característica” se mostrarán varias posibilidades distintas a la ecuación (2) para representar la característica I-V de un dispositivo FV, teniendo en cuenta estos efectos.

Eficiencia cuántica y respuesta espectral

Se define la eficiencia cuántica del dispositivo \(Q_e \) como el cociente entre el \(n^0 \) de electrones extraídos del mismo y el \(n^0 \) de fotones incidentes para cada valor de longitud de onda. Se utiliza como herramienta de caracterización de la corriente de cortocircuito. Para obtenerla se ilumina la célula con fotones de longitud de onda conocida, y se mide el \(n^0 \) de electrones que circulan por el exterior. Si llamamos eficiencia de colección \(\eta_c(\lambda) \) a la fracción de portadores efectivamente extraídos del dispositivo, y \(\alpha(\lambda) \) al coeficiente de absorción del material, la eficiencia cuántica \(Q_e \) puede obtenerse por:

\[
Q_e(\lambda) = \alpha(\lambda) \cdot \eta_c(\lambda) \quad (3)
\]
La eficiencia cuántica es un indicativo para diagnosticar si una célula está recolectando adecuadamente fotones de distintas longitudes de onda. La respuesta espectral expresa el mismo concepto en términos de corriente extraída por unidad de potencia luminosa incidente, y se relaciona con la eficiencia cuántica por:

\[S_{\phi}(\lambda) = \frac{e\lambda}{hc} Q_{\phi}(\lambda) \] (4)

Siendo \(h \) la constante de Planck, \(c \) la velocidad de la luz y \(e \) la carga del electrón.

Ambas magnitudes son importantes porque permiten identificar problemas y defectos en la célula, y en calibración de células, ya que la corriente generada se expresa como:

\[I_{\phi} = A \left[\int_{0}^{\infty} S_{\phi}(\lambda)E(\lambda)\,d\lambda = \frac{eA}{hc} \int_{0}^{\infty} Q_{\phi}(\lambda)E(\lambda)\,d\lambda \right] \] (5)

Donde \(E(\lambda) \) es la distribución espectral de la radiación incidente y \(A \) el área del dispositivo.

Parámetros característicos de la célula solar

El descriptor fundamental de la célula solar es su característica corriente-tensión I-V, que representa todas las posibles combinaciones de corriente y voltaje que pueden obtenerse de una célula en unas condiciones determinadas (más adelante veremos cuáles son los principales factores que afectan a la característica I-V). La Ilustración 7 presenta un ejemplo de una curva i-V típica de una célula fotovoltaica.

![Ilustración 7. Curva característica típica I-V de una célula fotovoltaica](image)
Los principales elementos que se desprenden de la característica I-V son:

- **Corriente de cortocircuito** (I_{cc}, notación española, I_{sc}, notación internacional): Es la máxima corriente que producirá el dispositivo bajo unas condiciones definidas de iluminación y temperatura, correspondientes a un voltaje igual a cero.

- **Voltaje de circuito abierto** (V_{ca}, notación española, V_{oc}, notación internacional): Es el máximo voltaje del dispositivo bajo unas condiciones determinadas de iluminación y temperatura, correspondientes a una corriente igual a cero.

- **Potencia máxima** (P_{max}): Es la máxima potencia que producirá el dispositivo en unas condiciones determinadas de iluminación y temperatura, correspondiente al par máximo V_xI.

- **Corriente en el punto de máxima potencia** (I_{max}): Es el valor de la corriente para P_{max} en unas condiciones determinadas de iluminación y temperatura.

- **Voltaje en el punto de máxima potencia** (V_{max}): Es el valor de voltaje para P_{max} en unas condiciones determinadas de iluminación y temperatura.

- **Factor de llenado o fill factor (FF)**: Es el valor correspondiente al cociente entre P_{max} y el producto $I_{sc} \times V_{oc}$. Puede venir expresado en tanto por ciento o tanto por 1, siendo el valor 100% el que correspondería a un hipotético perfil de curva cuadrado, no real. Nos da una idea de la calidad del dispositivo fotovoltaico, siendo éste tanto mejor cuánto más alto sea su factor de llenado.

- **Eficiencia η**: Es el cociente entre la potencia que puede entregar la célula y la potencia de la radiación solar que incide sobre ella P_L.

$$\eta (\%) = \frac{P_{max}}{P_L}$$

Distintos tipos de células fotovoltaicas

Existen diversos tipos de células fotovoltaicas, en función del material del que están fabricadas o la estructura de la célula. Podemos distinguir:

- **Células de Silicio monocristalino (Si-m)**. Las células son crecidas a partir de un único cristal, de manera que todo el material forma parte de la misma red cristalina.

- **Células de Silicio Policristalino (Si-p) y/o multicristalino**. La estructura está formada por multitud de monocristales, con orientaciones cristalográficas aleatorias. En ocasiones se distingue entre células policristalinas y multicristalinas en función del tamaño de los cristales, denominándose policristalinas aquellas con cristales más pequeños, en el rango entre 1µm y 1mm, y multicristalinas a aquellas que tienen tamaños de cristales más grandes (varios milímetros).

- **Células de Silicio Amorfo (Si-a)**. Aquí, las posiciones, distancias interatómicas y direcciones de los enlaces presentan dispersión respecto a las de la estructura cristalina ordenada. El proceso de fabricación es más sencillo, pero el rendimiento del dispositivo es menor. El espesor de la célula es menor, por lo que entran dentro de la categoría de células de lámina delgada.

- **Células de materiales híbridos**. Se denomina células de heterounión, y consisten en varias capas de materiales monocristalinos sobre las que se deposita un segundo material que puede ser de estructura poli (o micro) cristalina o amorfa.
- **Células compuestos binarios.** La célula está constituida por un compuesto binario, como puede ser el GaAs, CdTe, InP, etc.

- **Células de compuestos ternarios.** Las más utilizadas son CuInSe₂, CuInS₂, AlAsGa.

![Ilustración 8. Esquema de la estructura atómica de un material monocristalino, policrystalino y amorfo](image)

Dentro de las dos últimas categorías están lo que se denomina células de compuestos III-V, por estar compuestas de materiales de las columnas III y V de la tabla periódica. Éstas son las células más eficientes del mercado, y normalmente se utilizan para sistemas de alta concentración.

El generador fotovoltaico y asociaciones. Panel plano y sistemas de concentración

Introducción

Se entiende por generador fotovoltaico el conjunto de módulos fotovoltaicos que proporcionan la energía a una instalación. En este apartado comenzaremos con la descripción de la estructura básica del módulo FV, su curva característica y los factores que influyen en la misma, las particularidades a tener en cuenta al asociar varias células o módulos entre sí, y finalmente daremos una breve visión de los sistemas de concentración.

El módulo fotovoltaico

El módulo fotovoltaico consiste en la conexión eléctrica de células FV en serie-paralelo hasta obtener los valores de tensión y corriente deseados. El conjunto así definido es encapsulado de forma que quede protegido de los agentes atmosféricos que le puedan afectar cuando esté trabajando en la intemperie, dándole a la vez rigidez mecánica y aislándole eléctricamente del exterior. Los primeros módulos fotovoltaicos que se utilizaron en aplicaciones autónomas de pequeña potencia solían estar constituidos por 33 ó 36 células de silicio monocristalino o policrystalino, asociadas en serie. En la actualidad, con la amplia gama de instalaciones fotovoltaicas existentes y el incremento de nuevas aplicaciones como la integración de sistemas fotovoltaicos en edificios, el tamaño y características de los módulos presenta una gran variación

La estructura más convencional del módulo fotovoltaico es la que se esquematiza en la Ilustración 9, que presenta la sección transversal de un módulo en la que se observan los siguientes elementos:

- **Cubierta frontal:** Ha de poseer una elevada transmisión en el rango de longitudes de onda que pueden ser aprovechadas por una células solar fotovoltaica (350 a 1200 nm en el caso de células de silicio), y una baja reflexión de la superficie frontal, para aprovechar al máximo la energía solar incidente. Además, el material ha de ser impermeable al agua, deberá tener una buena resistencia al impacto, deberá ser estable a la exposición prolongada de rayos UV
y contará con una baja resistividad térmica. Si se diera el caso de que penetrara agua en el interior del módulo, ésta corroería los contactos metálicos contribuyendo a reducir drásticamente la vida útil del módulo. En la mayoría de los módulos la superficie frontal se utiliza para dar rigidez y dureza mecánica al mismo. Entre los materiales para la superficie frontal más empleados podemos encontrar acrílicos, polímeros y cristal. El más empleado suele ser el cristal templado con bajo contenido en hierro por sus características de bajo coste, elevada transparencia y estabilidad, impermeabilidad al agua y los gases y buenas propiedades de auto-limpiado.

- **Encapsulante:** Se utiliza para dar adhesión entre las células solares, la superficie frontal y la posterior del módulo. Deberá ser impermeable al agua y resistente a la fatiga térmica y la abrasión. El más utilizado es el EVA (etilen-vinil-acetato).

- **Cubierta posterior:** Debe ser impermeable y con baja resistencia térmica. Normalmente se utiliza una película de Tedlar adosada en toda la superficie del módulo, aunque también existen modelos que emplean una nueva capa de Tedlar y un segundo vidrio.

- **Células solares y sus conectores:** las cintas de interconexión eléctrica suelen ser de aluminio o acero inoxidable, y se sueldan de forma redundante, con dos conductores paralelos para aumentar la colección de portadores en ambas caras de la célula.

Distintos tipos de módulos fotovoltaicos

- El proceso de fabricación de un módulo de Si cuenta con varias fases que pueden resumirse en:
 1. Obtención del silicio de grado metáurgico por reducción de la arena o cuarcita.
 2. Purificación del silicio de grado metalúrgico a Si de grado semiconductor o solar
 3. Crecimiento del cristal de silicio
 a. Método Czochralski (Si-m)
 b. Refinado por método de la zona flotante (Si-m)
 c. Métodos de colada o solidificación direccional (Si-p)
 4. Transformación de los lingotes de Si en células solares
 a. Corte de los lingotes en obleas
 b. Limpieza y decapado (eliminar restos de metales y algunas micras de material)
 c. Texturización (creación de micropirámides) para aumentar la incidencia de la luz en la superficie de la célula
d. Formación de la unión p-n por difusión de dopantes
e. Realización de las metalizaciones, normalmente por serigrafía
f. Capa antirreflectiva

5. Unión de las células en el módulo

Con esto se obtendrían los módulos de Si mono y multicristalino, que son los más abundantes en el mercado. Las células de Si-m, como provienen de lingotes, tienen forma semicuadrada, mientras que las de silicio poli y multicristalino, al ser cristalizadas por solidificación direccional, son de aspecto cuadrado. Los rendimientos para este tipo de tecnología suelen ser del 16-18% en células y 13-15% en módulo.

- Otras tecnologías de silicio multicristalino: Existen dos procesos que se han desarrollado a nivel industrial para el crecimiento de láminas de silicio, que son el crecimiento definido por el borde, en el que se parte de Si fundido que asciende por capilaridad a través de una matriz de grafito, y el crecimiento de láminas sobre un soporte, en el que un par de filamentos metálicos delgados están sumergidos en un crisol donde se haya el Si fundido, y son extraídos lentamente para que solidifique la lámina. El material obtenido con estos métodos es casi monocristalino, con propiedades eléctricas similares a las del multicristalino, y suele tener una eficiencia del 15-16%.

- Tecnologías de lámina delgada.
 - Silicio amorfo (Si-a). Estos módulos en general se caracterizan por obtenerse mediante el depósito de grandes superficies de láminas delgadas de conductores y semiconductores sobre un substrato adecuado. La estructura más convencional es una capa p, un capa aislante intermedia (i) y una capa n (estructura p-i-n), aunque actualmente hay módulos de Si-a de múltiples uniones, que consiguen así incrementar la eficiencia. Presentan la ventaja de su bajo coste, menor uso del material (tienen el espesor de micras), su versatilidad y aspecto estético, que los hacen aptos para integración en edificios. Entre las desventajas tenemos el menor rendimiento y la degradación inicial que se produce en este tipo de módulos. Las eficiencias, para el caso de módulos de Si-a de una única unión suelen estar entre el 5-6%, y del 6-8% para el caso de módulos de Si-a de multiunión. Existen además tecnologías híbridas de Si-a y Si microcristalino, con eficiencias del 8-10%.
 - Módulos CIS. Se suelen obtener por vaporizaciones de diseleniuro de cobre e indio (CuInSe₂) sobre láminas de cristal. También desarrollado a nivel comercial consigue unas eficiencias de módulo entre el 11-13%.
 - Módulos de TeCd. El TeCd presenta las ventajas de poseer un ancho de banda prohibido bien ajustado al espectro solar y un alto coeficiente de absorción, con lo que unas pocas micras de absorbente son suficientes para la fabricación de una célula solar. Como desventaja tenemos la toxicidad del Cd. No obstante, esta tecnología tiene una fuerte implantación a nivel comercial como pudo observarse en las figuras del primer apartado de este capítulo. Su eficiencia actual está en torno al 9-11%.

- Módulos de alta eficiencia. Comentaremos brevemente algunos resultados fruto de la investigación en estas tecnologías, que han conseguido aumentar la eficiencia de los módulos.
 - Módulos de Si-m con células de contactos enterrados. La innovación de este tipo de células es que parte de los contactos frontales están semienterrados en el material de las células. De esta manera el contacto cubre menor área frontal, consiguiéndose así un aumento de la eficiencia. Fue una tecnología comercial durante muchos años, aunque de momento se ha detenido su fabricación. La eficiencia ronda en torno al 17% en célula y 15% en módulo.
 - Módulos con células de contactos posteriores. En este caso el contacto frontal se suprime, trasladándose a puntos de contacto en la cara posterior. Al no tener ningún recubrimiento que impida el paso de la luz solar hacia la célula, se consigue aumentar el rendimiento. Las eficiencias se sitúan entre el 22-24% para células y 19-21% para módulo.
Módulos de heteroución (HIT). Presentan láminas de silicio cristalino rodeadas de capas ultrafinas de Si-a. Con esto se consigue aumentar el rango espectral activo, y por lo tanto la eficiencia, que se sitúa entre el 18-20% para célula y 16-18% para módulo.

Módulos para sistemas de concentración. Se explicarán en apartados posteriores.

A continuación se muestran imágenes de diversas tecnologías de módulo.

![Módulo de Silicio monocristalino](image1)
![Módulos de Silicio policristalino](image2)
![Módulo con células de contacto posterior](image3)

![Módulo de TeCd](image4)
![Módulo de Silicio amorfo](image5)
![Módulo CIS](image6)

Ilustración 10. Imágenes de distintos tipos de módulos fotovoltaicos.
La curva característica del módulo fotovoltaico.

Como hemos mencionado, un módulo FV es una asociación serie-paralelo de células FV. Su curva característica será pues la equivalente a la mostrada en la Ilustración 7, pero con los parámetros definidos para el módulo. La Ilustración 11 presenta varias posibilidades de combinaciones para una asociación de 36 células FV: una asociación puramente en serie de las 36 células (36s), una asociación de 18 células en serie, conectada en paralelo con otras dos ramas de 12 (18s por 2p) o una asociación de 12 células en serie, en paralelo con otras dos ramas de 12 (12s por 3p). Puede observarse como al ser el mismo número de células, la potencia obtenida es la misma, y lo que varía es la manera de combinarse los pares I-V, dando lugar a diferentes corrientes de cortocircuito y voltajes de circuito abierto en función de la combinación.

Factores que afectan a la característica I-V del generador FV

Los principales factores que afectan a la característica I-V del generador fotovoltaico son la intensidad de iluminación (irradiancia) y la temperatura. La irradiancia afecta principalmente a la corriente, de manera que en primera aproximación se puede considerar que la corriente de cortocircuito es proporcional a la misma:

La temperatura tiene un efecto más destacado sobre la tensión y la potencia, de manera que al aumentar la temperatura estos disminuyen. La Ilustración 12 presenta sendos ejemplos de variación de la irradiancia a temperatura constante, y variación de la temperatura a irradiancia constante.
Existen unos coeficientes, característicos de cada módulo, que nos indican la manera en que los principales parámetros del módulo o célula varían con la temperatura. Estos son \(\alpha \), para expresar la variación de la corriente de cortocircuito con la temperatura, \(\beta \) para expresar la variación de la tensión de circuito abierto con la temperatura y \(\gamma \) para expresar la variación de la potencia máxima con T. Valores aproximados para células de silicio pueden tomarse como:

<table>
<thead>
<tr>
<th>Coeficiente</th>
<th>Forma de Expresión</th>
<th>Valor Approximado</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(\frac{\partial I_{sc}}{\partial T} \approx +0.06%)</td>
<td>(\beta)</td>
</tr>
</tbody>
</table>

Hay que tener en cuenta que los valores de los coeficientes presentados en la tabla anterior son aproximados para dispositivos de silicio cristalino. Actualmente existe una gran variedad de tecnologías en el mercado, algunas de las cuales, como las de Si-a y otras tecnologías de lámina delgada, se caracterizan por tener unos coeficientes de temperaturas más bajos, y por lo tanto un mejor comportamiento comparativo a temperaturas altas, sin tener en cuenta el resto de los efectos.

Actividad recomendada: Comparar los valores de los coeficientes de temperatura de distintos tipos de módulos FV. Obtener la información de las hojas de características técnicas de los módulos disponibles en internet.

Otros factores que afectan a la característica I-V.

Aunque son considerados de segundo orden, debemos mencionar otros factores que también afectan a la característica I-V, que son el efecto de la distribución angular y contenido espectral de la luz.

- Los valores nominales del módulo están medidos con un haz de luz perpendicular al mismo, sin embargo, cuando éste opera en condiciones reales la luz solar no incide perpendicularmente al módulo debido al movimiento continuo del sol, lo que hace que aumente las pérdidas por reflexión. Estas pérdidas se minimizan en el caso de los sistemas con seguimiento, en los que, dependiendo del tipo de seguimiento, puede llegar a tenerse incidencia perpendicular en todo momento.
Dependiendo de la hora de medida y la época del año el espectro presenta pequeñas desviaciones respecto al espectro considerado estándar en la superficie terrestre, y estas variaciones producen fotocorrientes distintas según sea la respuesta espectral. Además, el sensor utilizado para medir la radiación solar puede tener una respuesta espectral algo diferente a la del generador fotovoltaico que se quiere caracterizar. Existen normas internacionales que permiten calcular el error debido al desacoplo entre las respuestas espectrales de la muestra a medir y el dispositivo de referencia y el desacoplo entre el espectro medido y el espectro de referencia.

La ecuación característica

Al describir la célula solar se presentó una ecuación característica, la ecuación (2), indicando que en dispositivos reales hay ciertos efectos extrínsecos que modifican esta ecuación, y se materializan en forma de una resistencia serie Rs y resistencia paralelo, Rsh, y producen modificaciones en la forma de la característica I-V. El efecto de la Rs y Rsh en la curva I-V puede apreciarse en la Ilustración 13.

Ilustración 13. Efecto de un incremento de Rs (izquierda) y Rsh (derecha) en la característica I-V de un dispositivo FV.

Esto modificaría la ecuación característica (ecuación (2)), por introducción de los términos de Rs y Rsh. Además, a veces se utiliza un modelo de dos exponentiales con dos corrientes inversas de saturación de diodo I_{01} e I_{02}, y dos factores de idealidad del diodo, m_1 y m_2. Teniendo todo ello en cuenta, a continuación se presentan las tres ecuaciones más empleadas para representar la curva i-V de los dispositivos FV, junto con los esquemas eléctricos correspondientes. El resto de los parámetros presentes en las ecuaciones (6), (7) y (8) fueron descritos al describir la ecuación (2):
Tabla 2. Posibles ecuaciones características (de mayor a menor complejidad) y su correspondiente esquema eléctrico, para la característica I-V del generador FV.

<table>
<thead>
<tr>
<th>Esquema eléctrico</th>
<th>Ecuación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[I = I_L - I_0 \left[\exp \left(\frac{V + IR_s}{mV_i} \right) - 1 \right] - I_{i02} \left[\exp \left(\frac{V + IR_s}{mV_i} \right) - 1 \right] - \frac{V + IR_s}{R_{sh}}] [6]</td>
</tr>
<tr>
<td></td>
<td>[I = I_L - I_0 \left[\exp \left(\frac{V + IR_s}{mV_i} \right) - 1 \right] - \frac{V + IR_s}{R_{sh}}] [7]</td>
</tr>
<tr>
<td></td>
<td>[I = I_L - I_0 \left[\exp \left(\frac{V + IR_s}{mV_i} \right) - 1 \right]] [8]</td>
</tr>
</tbody>
</table>

Dependiendo del tipo de dispositivo, la precisión requerida y/o la disponibilidad de los datos y procedimientos de cálculo, se podría emplear cualquiera de las tres ecuaciones presentadas en la tabla anterior para modelar la curva I-V del generador, sabiendo que la expresión (8) es la más simplificada, pues no considera los efectos de \(R_s\) y \(R_{sh}\), y la ecuación (6) la más compleja, pero también la que requiere más parámetros de ajuste.

Condiciones de referencia para la característica I-V

Dado que la curva característica del módulo fotovoltaico cambia con las condiciones ambientales, es necesario definir una serie de condiciones de operación para poder contrastar los valores de distintos fabricantes y extrapolar a partir de ellas a otras condiciones deseadas. Las condiciones más empleadas son:

Condiciones Estándar de Medida (CEM)

Son en las de uso más generalizado y universal, y vienen definidas por:

- **Irradiancia**: 1000 W/m²
- **Distribución espectral**: AM 1.5G
- **Incidencia Normal**: 25°C

Normalmente los parámetros característicos de los módulos o células incluidos en las hojas de especificaciones técnicas de los fabricantes vienen definidos en estas condiciones. Sin embargo la experiencia muestra que pocas veces los módulos fotovoltaicos alcanzan estas condiciones, ya que con un nivel de irradiancia de 1000 W/m² que puede alcanzarse al mediodía, los módulos adquieren...
temperaturas de más de 25 °C. Es por ello por lo que se definen además, otras condiciones que pretenden representar el comportamiento del módulo de manera más realista.

Condiciones Nominales de Operación (CNO)

Vienen definidas por:
- Irradiancia: 800 W/m²
- Temperatura: Temperatura de Operación Nominal de la Célula (TONC)
- Velocidad del viento: 1 m/s
- Temperatura ambiente: 20°C

Donde TONC es lo que se define como la temperatura nominal de operación de la célula, y representa la temperatura que alcanzarían las células solares para un nivel de irradiancia de 800 W/m², temperatura ambiente de 20°C, velocidad del viento de 1m/s e incidencia normal. El valor de la TONC también viene incluido en las hojas de características técnicas de los módulos, y puede tener valores típicos entre los 47 y los 51 °, aunque depende del tipo de tecnología del módulo (si es lámina delgada, Si-m o Si-p, etc.) y del tipo de encapsulado.

La normativa internacional especifica la manera en que ha de calcularse esta temperatura, aunque suele ser información fácilmente accesible a través del fabricante. Dado que las condiciones nominales de operación hacen referencia a la temperatura ambiente, y no a la temperatura del módulo, se hace necesario una expresión que relacione ambas. Una expresión sencilla pero ampliamente utilizada es:

\[
T_c = T_a + \frac{NOCT - 20}{800} \times G
\]

(9)

Donde
- \(T_c \) es la temperatura de la célula o módulo
- \(T_a \) es la temperatura ambiente
- \(NOCT \) es la Temperatura de Operación Nominal de la Célula
- \(G \) es la irradiancia en W/m²

Extrapolación a otras condiciones de operación

Dadas las variaciones que presenta la característica I-V, especialmente con la irradiancia y la temperatura, es importante contar con unos medios para obtener esta característica en las condiciones deseadas. Existen normas internacionales que proponen varios métodos para convertir esta característica desde unas condiciones determinadas de irradiancia y temperatura a otras. Aquí se presentarán las ecuaciones del método 1 de la norma EN 61215, por ser las más universalmente empleadas, pero hemos de mencionar que la citada norma propone otros dos métodos, algo más complejos de aplicar.

Según esta norma, la característica I-V de un dispositivo fotovoltaico se podrá corregir a CEM u otras condiciones deseadas aplicando las siguientes ecuaciones:

4 Norma Europea EN 61215, Edición 2. Crystalline silicon terrestrial photovoltaic (PV) modules. Design qualification and type approval.
21 \ 21

\[I_2 = I_1 + I_{sc} \left[\frac{G_2}{G_1} - 1 \right] + \alpha (T_2 - T_1) \] \hspace{1cm} (10)

\[V_2 = V_1 - R_s \left(I_2 - I_1 \right) - k I_2 (T_2 - T_1) + \beta (T_2 - T_1) \] \hspace{1cm} (11)

donde:

- \(I_1, V_1 \) son las coordenadas de los puntos I-V medidos
- \(I_2, V_2 \) son las coordenadas correspondientes de los puntos en la curva corregida
- \(I_{sc} \) es la corriente de cortocircuito medida del dispositivo test
- \(G_1 \) es la irradiancia en las condiciones experimentales o conocidas
- \(G_2 \) es la irradiancia a la que se quiere extrapolara la característica I-V
- \(T_1 \) es la temperatura en las experimentales o conocidas del dispositivo fotovoltaico
- \(T_2 \) es la temperatura en condiciones estándar u otras condiciones a las que se extrapole la curva
- \(\alpha \) y \(\beta \) son los coeficientes de temperatura para la corriente y el voltaje del dispositivo fotovoltaico test a irradiancia estándar u otra irradiancia deseada
- \(R_s \) es la resistencia interna de la especie test
- \(k \) es un factor de corrección de la curva

La eficiencia del módulo fotovoltaico

Al hablar de la característica I-V de la célula FV se describió esta como el cociente entre la energía la obtenida del dispositivo y la energía incidente. Sin embargo, existen varias maneras de definir la eficiencia del generador fotovoltaico, dependiendo del área del mismo que se tenga en cuenta. Así, en los catálogos de fabricantes y en bibliografías de referencia podemos encontrar:

Eficiencia con respecto al área total:

Esta definición implica la relación entre la máxima potencia generada por el dispositivo y la cantidad de radiación solar incidente en el dispositivo completo. Por dispositivo completo se entiende el área total del módulo, incluyendo células, espacio intercelular, contactos y marco del mismo. Es la que se suele utilizar para módulos.

\[\eta_{area\,total} = \frac{P_{\text{max}}}{A_T \times G_T} \] \hspace{1cm} (12)

Donde \(\eta_{area\,total} \) es la eficiencia con respecto al área total, \(P_{\text{max}} \) es la potencia máxima que puede generar el dispositivo, \(A_T \) es el área total del mismo y \(G_T \) es la radiación solar incidente total.

Eficiencia con respecto al área de célula:

Es una versión modificada de la anterior, en la que sólo se considera el área cubierta por células dentro del módulo ignorando el espacio entre células y el marco del módulo. De esta manera se evita el efecto de marcos muy grandes, que en realidad no afectan a la calidad de las células FV. La expresión sería la misma que la de la ecuación (12), sustituyendo el área total por el área de células \(A_c \).

Eficiencia con respecto al área activa de célula:
Esta definición implica el cálculo de la eficiencia basada solamente en el área del dispositivo que está expuesta a la luz solar incidente. Las áreas sombreadas por los contactos o las rejillas de las células no estarían incluidas. Esta es la eficiencia que nos ofrece siempre un valor mayor, aunque normalmente sólo se utiliza para células individuales y en resultados de laboratorio, y no en dispositivos comerciales acabados. La Ilustración 14 esquematiza la superficie que se tendría en cuenta para el cálculo de los tres tipos de eficiencias en una célula de referencia, preparada y encapsulada con los mismos materiales que el módulo convencional.

Ilustración 14. Comparación de las áreas que se tendrían en cuenta para el cálculo de la eficiencia con respecto al área total (izquierda), con respecto al área de célula (centro) y con respecto al área activa de célula (derecha)

Breve apunte sobre los sistemas de concentración

Una manera de aumentar el rendimiento del sistema de generación FV es utilizando sistemas de concentración. En estos sistemas una parte de la superficie de la célula es sustituida por un sistema óptico que sea capaz de concentrar la cantidad de radiación solar incidente en una célula de tamaño menor, proporcionando una producción eléctrica igual o superior a la que se conseguiría con la célula de tamaño equivalente, pero con menor coste de fabricación. Un esquema se muestra en la Ilustración 15. La mayoría de los sistemas de concentración utilizan ópticas reflexivas, refractivas o una combinación de ambas.

Ilustración 15. Esquema del principio de la concentración FV
Se denomina concentración geométrica C a la relación entre el área de apertura del colector y el área receptora activa y concentración energética a la relación entre la radiación solar en W/m² que llega a la superficie de la célula, y la que llegaría si no existiesen elementos concentradores, por lo que esta podría definirse como la concentración efectiva. La primera se suele expresar como C_x y es la que suele utilizarse para expresar la concentración del sistema. Los sistemas de concentración suelen llevar seguimiento solar, y las células utilizadas son células de alta eficiencia, para aprovechar al máximo el sistema de concentración. Como inconvenientes podemos decir que al multiplicar la irradiancia incidente sobre la superficie de la célula esto produce un aumento considerable de temperatura, por lo que suele ser necesario el empleo de disipadores térmicos.

Los sistemas de concentración FV (CFV) se componen de los siguientes elementos:
- Células FV. Ha de estar diseñada para el nivel de irradiancia aumentado que incidirá sobre ella. Normalmente va conectada a un disipador para reducir el exceso de calor generado.
- Elementos ópticos. Pueden ser elementos reflexivos, refractivos a una combinación de ambos. Pueden existir, además, el colector principal, que realizaría una primera gran concentración de la radiación solar, y adicionalmente, mediante elementos ópticos secundarios se conseguiría aumentar más la concentración, al tiempo que se homogeneizaría el nivel de luz solar sobre la superficie de la célula.
- Seguidor. Los sistemas ópticos solo pueden enfocar la luz que incide sobre ellos con un determinado ángulo de aceptancia. No tendría por tanto sentido su utilización en localidades con mucha radiación difusa y poca directa a lo largo del año (en el apartado de radiaciones explicarán estos términos con mayor claridad). Es por ello que se recurre a sistemas de seguimiento.

Tipos de sistemas de concentración

- **Atendiendo a la óptica.**
 - Concentradores refractivos. Utilizan lentes refractivas como elemento concentrador. Las más utilizadas son las lentes de Fresnel, por tener menor peso y coste que una lente convencional. También son utilizadas las lentes de Fresnel lineales curvadas por su menor peso y coste.
 - Concentradores reflectivos. Utilizan materiales reflectivos para concentrar la luz, normalmente espejos de vidrio o plástico, o distintas superficies tratadas con recubrimientos reflectantes y reflectores de aluminio. En el rango de longitud de onda de interés para los dispositivos FV de silicio, la reflectividad del aluminio es del 85%, mientras que para los espejos se puede alcanzar el valor del 90 ó 95%. No obstante, el aluminio es más ligero, resistente y fácil de manejar.
 - Concentradores híbridos. Tienen elementos que funcionan por reflexión y por refracción, con lo que se consigue una mayor aceptancia angular, eficiencia, etc.

Ilustración 16. Esquema de distintas ópticas para concentradores fotovoltaicos.
Según el nivel de concentración

- Sistemas de baja concentración: Concentración geométrica $1 \leq X \leq 10$. Suelen utilizar células de silicio convencionales y elementos reflexivos.
- Sistemas de media concentración. Concentración geométrica $10 < X < 100$. Al no ser una concentración demasiado elevada también suelen utilizarse células de silicio (por ser más baratas que las de compuestos III-V). En cuanto a la óptica, puede ser por lentes de Fresnel, espejos, discos parabólicos, etc.
- Sistemas de alta concentración. Tienen concentraciones superiores a 100X, con células de compuestos III-V, normalmente de múltiples uniones, y generalmente foco puntual.

Resumen del capítulo

En el presente capítulo se ha descrito el estado actual de desarrollo a nivel mundial de la energía solar fotovoltaica, en relación con el resto de las energías renovables, con especial atención al marco de los países de América Latina y el Caribe. El capítulo continúa con la descripción técnica de los fundamentos y tecnologías que se inscriben dentro de lo que denominamos energía solar fotovoltaica. La parte final presenta aspectos que atañen al uso de generadores fotovoltaicos, como las características de asociaciones de dispositivos fotovoltaicos, la influencia de las condiciones de operación de los dispositivos y en general los aspectos técnicos más importantes del subsistema de generación fotovoltaica. Un último apartado suministra nociones básicas sobre los dispositivos de concentración fotovoltaica.
Capítulo 2. Fundamentos de la Radiación Solar y Energía Generada

El Sol, nuestra estrella más cercana, emite una enorme cantidad de radiación fruto de reacciones internas de fusión nuclear. Una pequeña parte de esta energía llega a la tierra, lo que constituye un formidable recurso. Conocer su naturaleza, así como su disponibilidad espacial y temporal, constituye el primer paso para aprovecharlo mediante la conversión fotovoltaica.

En este capítulo se presentarán los fundamentos de la radiación solar para aplicaciones fotovoltaicas. Conocidos estos se pasará a estudiar algunos aspectos sobre las estructuras de soporte que se utilizan para colocar los módulos FV en el campo, ya que en función de éstas tendremos mayor o menor cantidad de radiación solar sobre la superficie del módulo. Finalmente se mostrará un procedimiento de cálculo aproximado para obtener la potencia del módulo en las condiciones meteorológicas de una determinada localidad, dato fundamental para integrar la energía generada a lo largo del año.

Naturaleza de la Radiación Solar

En esta sección trataremos el origen, naturaleza y composición de la radiación solar, esto es, responderemos a la pregunta ¿Qué entendemos por radiación solar?

Irradiancia e Irradiación Solar

La radiación solar es la energía que nos llega del sol en forma de ondas electromagnéticas. A diferencia de otro tipo de transferencia de energía, la radiación electromagnética no precisa de soporte material para su transmisión, es decir, puede transmitirse a través del vacío.

Según el aspecto de la radiación solar que pretenda estudiarse, se utilizan varios conceptos para definir sus características.

El primero de ellos, llamado Irradiancia Solar \((G) \), constituye una medida de potencia (energía/tiempo) por unidad de área. Por lo tanto se mide en vatios por metro cuadrado (W/m²), o milivatios por centímetro cuadrado (mW/cm²) cuando se trata de expresar la irradiancia incidente sobre una célula. La irradiancia que llega a nuestro planeta proveniente del Sol tiene un valor medio aproximado de 1 367 W/m².

¿Qué importancia tiene el concepto de irradiancia para la Energía Solar Fotovoltaica (ESF)?

La eficiencia de conversión eléctrica de un dispositivo fotovoltaico se expresa en tanto por ciento respecto de la irradiancia solar global incidente sobre éste.
Si un módulo fotovoltaico de área 1,28 m² entrega 210 W en Condiciones Estándar de Medida o STC (G = 1000 W/m² y T = 25 ºC y espectro solar tipo AM1.5G), su potencia unitaria será entonces de 210 W/1,28 m² = 164,1 W/m², lo que supone una eficiencia de conversión de 16,4 % en dichas condiciones.

Por Irradiación Solar se entiende la cantidad de energía solar que incide por unidad de superficie durante un período definido de tiempo (usualmente un día, mes o año). Se obtiene integrando la irradiancia global en dicho período. Suele expresarse en kWh/(m²·día), kWh/(m²·mes) o kWh/(m²·año).

¿Para qué se utiliza el concepto de Irradiación en ESF?

La Irradiación Solar Anual característica de un emplazamiento constituye el parámetro fundamental a considerar para situar una instalación solar fotovoltaica.

Composición espectral de la radiación solar

La radiación solar se compone de ondas electromagnéticas que abarcan un determinado rango de frecuencias, o inversamente, de longitudes de onda. La práctica totalidad de su energía se encuentra en el intervalo de longitudes de onda existente entre 0,2 μm y 4 μm. Su representación se conoce como el Espectro Solar.

Fuera de la atmósfera, su espectro se corresponde con el de un cuerpo negro a una temperatura de 5 770 K. Es el denominado AM0 (Air Mass 0). Posteriormente, la interacción de la radiación solar con la atmósfera terrestre hace que dicho espectro se modifique. El Espectro Solar de Referencia para aplicaciones fotovoltaicas terrestres es el AM1.5G, correspondiente a una masa de aire de 1,5.

¿Qué importancia práctica tiene el contenido espectral de la radiación solar en ESF?

El contenido energético existente en una región del espectro solar indica el grado de aprovechamiento que un material semiconductor puede realizar de éste. Dependiendo del material o materiales semiconductores de los que esté formado el dispositivo fotovoltaico, aprovechará una u otra región del espectro, en función de su curva de respuesta espectral.
Componentes directa y difusa de la radiación solar

Según el modo en que radiación solar llegue hasta la superficie terrestre, después de haber atravesado la atmósfera, la Irradiancia Solar puede descomponerse en una fracción llamada irradiancia directa, G_d, y otra fracción denominada irradiancia difusa, G_{diff}.

Por otro lado, la superficie terrestre refleja una fracción de la irradiancia solar recibida. Por ello, un dispositivo fotovoltaico o un sensor de irradiancia solar, dependiendo de su orientación, puede recibir también parte de dicha irradiancia reflejada, influyendo en su comportamiento. Dicha fracción se conoce como albedo.

¿Qué componentes de la irradiancia solar es capaz de aprovechar una célula o módulo fotovoltaico?

Un dispositivo fotovoltaico “plano”, funcionando en modo convencional, es capaz de aprovechar las componentes directa, difusa y reflejada de la irradiancia solar, de modo que la intensidad de corriente eléctrica que produce es directamente proporcional al valor de...
irradiancia global. Los dispositivos de concentración, sin embargo, están diseñados para concentrar y generar a partir de la componente directa.

Caracterización de la Radiación Solar

En esta sección aprenderemos también a distinguir los parámetros físicos más útiles para la correcta caracterización de la radiación solar.

Tiempo Civil y Tiempo Solar

La referencia temporal que manejamos cotidianamente se denomina Tiempo Civil (LMT, Local Mean Time). Éste es definido para zonas geográficas más o menos amplias. Sin embargo, al estudiar la energía solar resulta más simple utilizar el Tiempo Solar (LAT, Local Apparent Time). La diferencia entre una y otra referencia depende de la Longitud de la zona considerada.

La Longitud de referencia, λ, para el Tiempo Universal (U.T.) es el meridiano de Greenwich, y su Tiempo Civil se conoce como GMT (Greenwich Mean Time). Existe aun así, debido a pequeños movimientos del eje Norte-Sur terrestre, una leve diferencia entre GMT y LAT, dada por la llamada ecuación de tiempo (ET). En función de esta, para una zona de longitud λ, se obtiene la equivalencia entre el tiempo civil y el tiempo solar. Hay que considerar que cada hora de avance respecto de GMT se corresponde con 15 grados en longitud (positiva hacia el Este), y que en algunos países se realiza una corrección, c, para el horario de verano.

$$LAT = LMT + ET + \left(\lambda - \lambda_c\right) / 15 - c$$

Para conocer y predecir su magnitud, identificaremos los ángulos geométricos que definen la posición del Sol respecto de un observador terrestre, en un momento determinado. Además, se estudiarán las variables climatológicas que pueden modificar su valor.

Determinar la posición solar

La geometría del sistema Sol-Tierra, el instante de observación y la posición de éste sobre la superficie terrestre condicionan la posición aparente del Sol.

¿Qué influencia tiene la posición solar en ESF?

La determinación de la posición solar sirve para la irradiancia (y su integral, la irradiación) incidente sobre un plano horizontal. También sirve para determinar el Ángulo de Incidencia (AOI, Angle of Incidence) de la radiación solar sobre los dispositivos fotovoltaicos, y así evaluar posibles opciones de seguimiento solar, en función de las pérdidas angulares.
En efecto, el valor de irradiancia sobre plano horizontal fuera de la atmósfera viene dado por
\[G_0 = \varepsilon \cdot 1367 \cdot \sin(\gamma_s) \], siendo
\[\varepsilon = 1 + 0.0334 \cdot \cos(j') - 2.80^\circ \] la corrección de la irradiancia solar media debido a la excentricidad de la órbita terrestre. Se estima en función del ángulo diario,
\[j' = \left(\frac{N_{dia}}{365.25} \right) \cdot 360^\circ \]. El ángulo \(\gamma_s \) representa la altitud solar.

Ilustración 19: posición del sol respecto de un observador terrestre. FUENTE: The European Solar Radiation Atlas.

Ángulos de declinación, altitud y azimut solares

El ángulo de declinación, \(\delta \), puede obtenerse a partir del ángulo diario como:

\[\delta = 0.006918 - 0.399912 \cdot \cos(j') + 0.070257 \cdot \sin(j') - 0.006758 \cdot \cos(2j') \\
+ 0.000907 \cdot \sin(2j') - 0.002697 \cdot \cos(3j') + 0.00148 \cdot \sin(3j') \]

A partir de éste, pueden obtenerse los ángulos de altitud solar, \(\gamma_s \), y azimut, \(\alpha_s \), conociendo la latitud \(\phi \) y el ángulo horario solar \(\omega \) en función de la hora \(t \) del día (entre 0 y 24), \(\omega = 15(t - 12) \).

\[\gamma_s = \sin^{-1} \left(\sin \phi \cdot \sin \delta + \cos \phi \cdot \cos \delta \cdot \cos \omega \right) \]

\[\cos \alpha_s = \pm \left(\sin \phi \cdot \sin \gamma_s - \sin \delta \right) / \cos \phi \cdot \cos \gamma_s \] (para el hemisferio sur, signo menos)

\[\sin \alpha_s = \cos \delta \cdot \sin \omega / \cos \gamma_s \]

donde:
\[\alpha_s = \cos(\cos \alpha_s), \quad \sin \alpha_s > 0 \quad \text{y} \quad \alpha_s = -\cos(\cos \alpha_s), \quad \sin \alpha_s < 0. \]

La influencia de la atmósfera y el clima

Hasta ahora, los parámetros obtenidos dependían de variables geométricas, fácilmente predecibles. Para evaluar la irradiación recibida en la superficie terrestre, a partir de la existente antes de atravesar la atmósfera, recurriremos a varios parámetros.

- **El índice de claridad**, \(K_{td} \), se define para una zona a partir de la irradiación media diaria en superficie, \(G_d \), y la irradiación media extraterrestre, \(G_{od} \), como el cociente \(G_d / G_{od} \). El índice de claridad mensual vendría definido a partir de valores medios del índice diario como \((K_{td})_m = (G_d)_m / (G_{od})_m \).

- **La masa de aire relativa**, \(m \), representa el camino recorrido por la radiación a través de la atmósfera. Depende del ángulo de altitud solar, \(\gamma_s \), y de la presión atmosférica local, \(p \). Viene dada por la expresión \(m = \left(\frac{p}{p_0} \right) \left(\sin \gamma_s + 0,50572(\gamma_s + 6,07995^\circ)^{-1,6364} \right) \).

- **Espesor óptico (Rayleigh)**, \(\delta_r \), puede obtenerse en función de la masa de aire mediante el algoritmo \(1 / \delta_r = 6,6296 + 1,7513 \times m - 0,1202 \times m^2 + 0,00065 \times m^3 - 0,00013 \times m^4 \) para \(m < 20 \). En caso contrario, aplíquese \(1 / \delta_r = 10,4 + 0,718 \times m \).

- **El factor de turbidez (Linke)**, \(T_{lk} \), dado por el estado de la atmósfera (en ausencia de nubes), con valores típicos de 2 para atmósferas frías y claras, 3 para atmósferas cálidas y claras, 4-6 para atmósferas con alto contenido en vapor de agua y >6 para atmósferas contaminadas. De este modo, la irradiancia directa sobre una superficie horizontal puede determinarse por la siguiente correlación: \(G_s = 1367 \times \exp(-0,8662 \times T_{lk} \times m \times \delta_r) \times \sin \gamma_s \).

Ilustración 20. Mapas de irradiación global media diaria en Centroamérica y Sudamérica. FUENTE: NREL.

Estructuras de soporte y energía generada

La energía producida por el sistema dependerá, en primer lugar, del tipo de montaje del campo de paneles, si es fijo, con seguimiento, etc., y además, de la estimación de las diferentes pérdidas que
La instalación del generador. Estructuras de soporte.

La estructura de soporte del campo de paneles fotovoltaicos es un elemento auxiliar importante que cumple tres funciones fundamentales:
- Por un lado actúa de armazón, confiriendo rigidez al conjunto de módulos FV, y adaptando la geometría y disposición del panel,
- Además, sitúa a los módulos en una orientación e inclinación adecuadas, que dependerá de la localidad geográfica en que se sitúen y también del tipo de aplicación,
- Y finalmente, sirve como elemento intermedio para la unión de los módulos FV con el suelo o elemento constructivo al que estén anclados (tejado, pared, etc.).

Los materiales de que están construidas han de ser resistentes a la corrosión, empleándose comúnmente aluminio anodizado y acero galvanizado en caliente. Los módulos FV se fijan sobre ellas con tornillería de aluminio anodizado o acero inoxidable para evitar pares galvánicos y corrosiones. Además, debe garantizarse un buen aislamiento eléctrico.

En cuanto a la inclinación, en muchas instalaciones se optimiza el diseño para obtener los valores máximos de salida del campo fotovoltaico durante los peores meses del año, que es cuando la radiación es más débil y la producción de energía mucho menor, o se optimiza para obtener la mayor producción anual. En ocasiones se utilizan estructuras que cuentan con dos o tres posiciones, permitiendo al usuario variar la inclinación del generador según la estación.

La colocación de los paneles fotovoltaicos depende del número de módulos, el espacio disponible, la posible integración en elementos ya construidos, etc., pero podemos comentar de forma general las siguientes posibilidades:

Suelo. Es la forma más usual y presenta las ventajas de accesibilidad, facilidad de montaje y área opuesta al viento, aunque es susceptible de quedar enterrada o ser objeto de rotura por animales o personas.

Poste. Usual en instalaciones de pequeña dimensión, como farolas o equipos de comunicaciones. Pared. Presenta la ventaja de que no requiere un espacio adicional, sin embargo puede presentar los inconvenientes de no tener una orientación adecuada o estar sometida a sombras parciales.

Tejado. Es una de las más usuales, ya que no requiere ni espacio ni estructuras adicionales, pero al igual que en el caso anterior puede resultar más difícil encontrar la orientación adecuada y es frecuente la aparición de sombras parciales.

Para instalaciones de mayor tamaño, en las que el generador fotovoltaico está constituido por diversos grupos, se requieren instalaciones más robustas cimentadas adecuadamente. Además en estos casos hay que poner especial cuidado en que una hilera de módulos no sombree a la otra inmediatamente posterior, teniendo en cuenta las primeras y últimas horas del día en que la sombra proyectada es más alargada, y las diferentes trayectorias del sol a lo largo del año.

Sistemas con seguimiento.

En la actualidad se está extendiendo mucho la instalación de sistemas fotovoltaicos con seguimiento solar, ya que de esta manera se consigue un mayor aprovechamiento de la energía del sol. La conveniencia, y el tipo de seguimiento, dependerán de la localidad en que vaya a ser instalado el sistema, y la ganancia que se consiga frente a la ocupación del terreno. Existen diversos tipos de
sistemas según el tipo de seguimiento. Los más empleados aparecen resumidos en el cuadro siguiente.

<table>
<thead>
<tr>
<th>Seguimiento en dos ejes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>La superficie colectora se mantiene en todo momento perpendicular a los rayos de sol, con lo que se asegura la máxima captación de energía. Para que el ángulo de incidencia sea mínimo, la inclinación de la superficie ha de ser igual al ángulo cenital del sol y la orientación igual al acimut solar.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seguimiento en un eje polar (inclinado la latitud de lugar).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gira sobre un eje norte-sur con la superficie orientada al sur para el hemisferio norte y al norte para el hemisferio sur, e inclinado un ángulo igual a la latitud, de forma que el eje de rotación del sistema es paralelo al eje de la tierra. El giro se ajusta para que la normal a la superficie coincida en todo momento con el meridiano local que contiene al sol y la velocidad de giro es de 15° por hora.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seguimiento en un eje azimutal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>La superficie gira sobre un eje vertical. El ángulo de inclinación de la superficie es constante e igual a la latitud. El giro se ajusta para que la normal a la superficie coincida en todo momento con el meridiano local que contiene al sol. La velocidad de giro es variable a lo largo del día.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seguimiento en un eje horizontal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>La superficie gira sobre un eje horizontal y orientado en dirección norte-sur. El giro se ajusta para que la normal a la superficie coincida en todo momento con el meridiano terrestre que contiene al sol.</td>
</tr>
</tbody>
</table>

Ejemplo

Actividad recomendada: Realizar una búsqueda de sistemas comerciales de montaje de módulos fotovoltaicos, tanto para instalaciones fijas como con seguimiento.
La energía obtenida del generador fotovoltaico.

Para poder estimar la energía generada por un generador fotovoltaico debemos, en primer lugar, conocer cuál es la radiación incidente sobre el plano en el que se sitúan los módulos fotovoltaicos. A partir de ésta, y con los datos de temperatura, deberemos estimar la potencia en las condiciones experimentales deseadas, y evaluar, o por lo menos, asignar un valor de los más comunes existentes en la bibliografía, a los distintos factores de pérdidas que reducen la potencia de un generador desde sus valores nominales hasta sus valores reales en operación. Obtendrá esta potencia se integran esos valores para el periodo que deseamos cuantificar la energía, ya sea diario, mensual o anual.

Para el cálculo de la energía del generador en condiciones experimentales partimos de la potencia del mismo en el punto de máxima potencia del sistema, y lo extrapolaremos a las condiciones de irradiación y temperatura de la localidad en la que se haya instalado nuestro sistema. Existen diversos programas informáticos que nos suministran los valores de irradiación y temperatura para determinadas localidades y en distintas orientaciones e inclinaciones. En los ejemplos que se presentarán en el caso práctico los datos han sido obtenidos del programa Meteonorm o de la aplicación PVGIS: Geographical Assessment of Solar Energy Resource and Photovoltaic Technology. Esta aplicación, ha sido desarrollada por el Instituto de Estudio Medioambientales (IES: Institute of Environmental Studies) del JRC en colaboración con la Agencia Internacional de la Energía y la Escuela de Minas de París, y permite la obtención de recursos solares y el cálculo de producciones fotovoltaicas en distintas localidades de Europa Asia y el Sur-oeste de Asia.

Extrapolación de los valores de potencia a las condiciones de operación. Método -I (simplificado).

En el capítulo 1 se explicó un procedimiento para extrapolar la curva I-V completa de unas condiciones determinadas a otras condiciones deseadas. Si se dispone de la curva I-V completa del sistema de generación se puede utilizar ese método, pero normalmente no se suele disponer de la curva completa, y sí de los valores de la potencia nominal del sistema. Partiendo de ésta puede calcularse, mediante un modelo aproximado, la potencia en distintas condiciones de operación. Una de las ecuaciones más empleadas para ello, por su simplicidad, es:

$$P_m = P_{m,ref} \frac{G}{G_{ref}} \left[1 + \gamma \left(T_c - T_{c,ref} \right) \right]$$ (13)

Donde:

- P_m es la potencia máxima del generador en las condiciones deseadas de irradiación G y temperatura de la célula T_c.
- $P_{m,ref}$ es la potencia máxima del generador en las condiciones de referencia (condiciones estándar de medida u otras condiciones en las que se conozca la potencia)
- G_{ref} es la irradiación en las condiciones de referencia
- $T_{c,ref}$ es la temperatura de la célula en las condiciones de referencia
- γ es el coeficiente de variación del punto de máxima potencia con la temperatura.

La ecuación (13) hace referencia a la temperatura de la célula, no la temperatura ambiente que es la que suele encontrarse en las series históricas de datos meteorológicos, sin embargo, ya se presentó una ecuación que relacionaba ambas en el capítulo 1.
donde \(T_c \) es la temperatura de célula, \(T_a \) es la temperatura ambiente, TONC es la Temperatura de Operación Nominal del módulo fotovoltaico, y \(G \) es la irradiancia.

Los factores de pérdidas

La ecuación (13) permite el cálculo de la potencia en distintas condiciones de operación, y a partir de ahí se podría obtener la energía. Sin embargo, en un sistema real existen diferentes pérdidas que hay que tener en cuenta y que hacen que la potencia del sistema no sea igual a la que se obtendría multiplicando la potencia nominal del módulo tipo por el número de módulos que componen el sistema. El cálculo exacto de las mismas no es siempre fácil, sin embargo, para algunas de ellas se pueden aplicar intervalos generales, o utilizar valores de referencia en la literatura. En general, los factores a tener en cuenta serían:

- Pérdidas por diferencia de parámetros entre módulos (mismatch).
- Pérdidas por suciedad o polvo.
- Pérdidas angulares y espectrales.
- Pérdidas óhmicas en corriente continua, debidas a las caídas óhmicas en el cableado.
- Pérdidas por no cumplimiento de la potencia nominal. Aquí se refiere a la posibilidad de que los fabricantes suministren módulos con potencias próximas al límite inferior del rango que dan como válido para su potencia nominal, lo cual, en un número suficiente de módulos, produciría una reducción de la potencia del sistema.
- Pérdidas por rendimiento del seguimiento del punto de máxima potencia.
- Pérdidas por sombreado.
- Pérdidas por temperatura.
- Pérdidas por rendimiento AC/DC del inversor.
- Pérdidas óhmicas en alterna.
- Pérdidas debidas a otros aspectos no considerados como paradas por mantenimiento, funcionamiento a baja irradiancia, etc.

En el apartado de bibliografía se referencian algunos artículos que estiman factores de pérdidas para distintos sistemas fotovoltaicos.

Ejemplo

Actividad recomendada: Realizar una búsqueda bibliográfica de los factores de pérdidas mencionados en la lista anterior para algunos sistemas fotovoltaicos según la localidad, posición y orientación.
Resumen del capítulo

En este capítulo hemos conocido los fundamentos de la radiación solar como recurso primario de la energía solar fotovoltaica. Se ha descrito su origen, naturaleza y composición. Hemos aprendido también a distinguir los parámetros físicos más útiles para su correcta caracterización. Para conocer y predecir su magnitud, hemos identificado los ángulos geométricos que definen la posición del Sol respecto de un observador terrestre, en un momento determinado. Además, hemos estudiado las variables climatológicas que pueden modificar su valor. En cada uno de estos apartados hemos prestado especial atención a la influencia que estas variables ejercen sobre la producción de energía solar fotovoltaica. Se han presentado distintas posibilidades de instalación de los sistemas fotovoltaicos, y se ha ofrecido un método sencillo para estimar la potencia del generador en distintas condiciones de operación y, a partir de ahí, obtener la energía generada.
Capítulo 3. Componentes de los sistemas fotovoltaicos y estándares

Este tema describe los principales componentes de los sistemas fotovoltaicos, exceptuando los paneles solares. Se presta especial atención a los acumuladores de energía, a los sistemas de acondicionamiento de potencia y a las cargas de los sistemas, es decir a los “aparatos” que finalmente queremos hacer funcionar. También se analiza el resto de componentes del sistema. Además en este tema se incluye un análisis de la normativa que afecta a los sistemas fotovoltaicos y sus componentes.

Ilustración 21: Sistema fotovoltaico autónomo

Almacenamiento y acondicionamiento de energía

En este apartado describimos los componentes del sistema fotovoltaico. El sistema puede carecer de alguno o algunos de los componentes que van a ser descritos dependiendo de su finalidad y diseño específico.

Sistema de acumulación de energía

Debido a la naturaleza variable de la radiación solar en ciclos diarios (día/noche, presencia de nubes) y anuales (diferente nivel de insolación dependiente de la estación del año) muchas aplicaciones precisan incorporar un sistema de acumulación de la energía eléctrica generada por los paneles solares. De esta manera es posible utilizar la energía en el momento en que se precisa, que no tiene por qué coincidir necesariamente con el momento en que se produce.
El ejemplo más obvio es el de la iluminación: La energía eléctrica es generada cuando hay luz natural que usualmente coincide con el tiempo durante el cual no se precisa utilizar iluminación artificial. Por tanto la energía producida ha de ser almacenada para recurrir a la iluminación artificial cuando no existe iluminación solar natural y por tanto los paneles solares no están produciendo electricidad. En las aplicaciones descentralizadas de la energía solar fotovoltaica el sistema de acumulación de energía utilizado con mayor frecuencia son las baterías de plomo-acido, la acumulación de agua en depósitos para su uso posterior y las baterías alcalinas de Ni-Cd o Ni-Fe.

Las características más deseables en un sistema de almacenamiento de energía para aplicaciones fotovoltaicas son un largo tiempo de vida, alto número de ciclados (carga-descarga), baja autodescarga, poca necesidad de mantenimiento, resistencia a periodos de baja carga, alta eficiencia de carga y bajo precio.

En este texto vamos a centrarnos en la descripción de las **baterías de plomo ácido** (Pb-ácido). Ilustración 22) por ser el sistema de acumulación más utilizado en aplicaciones descentralizadas de la energía solar fotovoltaica (ESFV). Estas baterías están constituidas usualmente por grupos de vasos de 2 V que se asocian para obtener la tensión requerida. Son muy comunes las baterías que suministran directamente 12 V o 24 V. La temperatura de operación se sitúa entre -10ºC y 50ºC. La densidad energética de la baterías de Pb-ácido se sitúa entre 10 Wh/kg y 30 Wh/kg y el número de ciclados, es decir el número de veces que la batería puede ser cargada y descargada se sitúa entre 500 y 2000 veces. La capacidad de acumulación se sitúa entre 50 Ah y 12000 Ah.

La baterías de Pb-ácido están fabricadas con placas de metal que constituyen los **electrodos** (la parte positiva es óxido de Pb y el polo negativo es Pb), una disolución de ácido sulfúrico en agua denominada **electrolito** y el **vaso** que contiene los componentes citados. Durante la carga de la batería se produce una reacción química entre los electrodos y el electrolito, que se invierte durante la descarga, dependiendo de que a los electrolitos se conecte un generador o una carga eléctrica respectivamente. Durante la carga se genera ácido sulfúrico que se incorpora al electrolito aumentando su densidad mientras en la descarga se produce el proceso inverso. Los procesos
químicos que se producen durante la carga de la batería generan hidrógeno H_2 en el proceso denominado gasificación. Este gas es explosivo, lo cual ha de ser tenido en cuenta evitando que se produzcan acumulaciones de gas en el lugar donde se sitúen las baterías. Chispas o fuego cerca de las baterías puede provocar explosiones. La densidad del electrolito varía con el estado de carga y con la temperatura. Como cifra orientativa la capacidad de la batería se ve reducida un 1% por grado centígrado. Obviamente esto ha de ser tenido en cuenta en instalaciones fotovoltaicas situadas en ambientes fríos. Si se dispone de las hojas de características técnicas de la batería es posible estimar su estado de carga a partir de la tensión medida en sus bornes y de la densidad del electrolito.

A las baterías de Pb-ácido se le asigna comercialmente por su capacidad en Ah o Wh a una cierta corriente de descarga, usualmente 10 A. La capacidad de una batería es la cantidad de energía eléctrica que puede ser extraída de la batería sin que la tensión en bornes de la batería caiga por debajo de cierto valor. Otro concepto básico es el de estado de carga de la batería (SOC) que se define como la cantidad de carga disponible en un momento dado dividida entre la cantidad de carga disponible cuando la batería está completamente cargada.

Cuando las baterías permanecen en un estado de baja carga durante largos períodos de tiempo se produce un fenómeno denominado sulfatación, en el cual se acumula sulfato de plomo en los bornes de la batería. Estos procesos reducen la capacidad de la batería. Otro proceso que reduce la capacidad de la batería es la corrosión de las placas ya sea por un exceso de carga de la batería (sobrecarga) o durante el uso normal de la batería largos períodos de tiempo. Al menos los estados de sobrecarga pueden ser evitados mediante una correcta gestión de la carga de las baterías. También afecta a la duración de las baterías la estratificación del electrolito, que consiste en la tendencia del ácido sulfúrico a depositarse en el fondo del vaso de la batería. El electrolito se hace más denso hacia el fondo de la batería y por tanto contiene menos carga en sus partes altas. Este proceso puede ser mitigado mediante un moderado gaseo (es decir que se produzca el hidrógeno que mencionamos arriba) que redistribuya el electrolito en todo el vaso.

Existen baterías de Pb-ácido fabricadas específicamente para usos fotovoltaicos. Sin embargo son más caras que las baterías de automóvil. Así, en muchas instalaciones de países desarrollados se instalan baterías de automóvil. En esos casos es deseable que se instalen baterías de una capacidad mayor que la que correspondería por dimensionado. Este modo de proceder evitaría un bajo estado de carga en las baterías de automóvil que se traduciría en una drástica reducción de su tiempo de vida.

Las baterías de Ni-Cd son varias veces más caras que las de Pb-ácido y su uso está restringido a pequeñas aplicaciones en telecomunicaciones, teléfonos, señalización etc. de moderado consumo energético.
Disponemos de una instalación fotovoltaica equipada con una batería de Pb-ácido de 180 Ah a 12 V en bornes de la batería. Se han prestado los paneles solares a un vecino para que pudiera bombar agua de su pozo. Si en el momento de la desconexión nuestra batería estaba cargada al 89 %, se permite una profundidad de descarga de hasta un 73 %, la eficiencia carga/descarga es del 85 % y vamos a utilizar solamente una lámpara fluorescente de 18 W, ¿De cuántas horas de iluminación disponemos sin dañar apreciablemente a la batería?

La energía eléctrica que contiene la batería es 180 Ah x 12 V = 2160 Wh

Este valor se ve reducido por el estado de carga 0.89, la profundidad de descarga 0.73 y la eficiencia de descarga 0.85 de la siguiente manera:

\[
2160 \text{ Wh} \times 0.89 \times 0.73 \times 0.85 = 1192.84 \text{ Wh utilizables. Por tanto el número de horas que podemos utilizar nuestra lámpara es: } 1192.84 \text{ Wh/18 W} = 66 \text{ h}
\]

Reguladores de carga

El propósito de los reguladores de carga es prevenir la sobrecarga o sobredescarga de la batería y por tanto la reducción del tiempo de vida de estas últimas. Los reguladores se sitúan entre generador y batería. Una función adicional del regulador de carga es evitar la sobredescarga de las baterías, desconectándolas de las cargas (lámparas refrigeradores etc.). Las posibilidades de diseño de los reguladores son infinitas, desde el más sencillo, constituido por una resistencia hasta sistemas que analizan en el tiempo los datos físicos y eléctricos de los diferentes componentes del sistema fotovoltaico (tensión y temperatura de la batería, estados de carga, corrientes de carga y descarga etc.) varían las condiciones de operación del sistema en base a algoritmos matemáticos. Obviamente el precio del regulador suele ir paralelo a sus prestaciones.

En la práctica algunos usuarios cortocircuitan las conexiones del regulador y la batería de manera que pueden seguir consumiendo energía desde las baterías, a pesar de que el regulador pueda haber interrumpido el suministro de energía a las cargas. Este modo de proceder, nada infrecuente en usuarios de instalaciones rurales, puede provocar la reducción acelerada del tiempo de vida de las baterías.

Inversores CC/CA

Una de las dificultades con las que se encuentra la ESFV es que la mayoría de las cargas están diseñadas para trabajar en corriente alterna. La inmensa mayoría de las lámparas, refrigeradores, etc. han sido pensados para su uso en la red alterna convencional. El uso de cargas de CC que puedan ser conectadas directamente a una batería puede suponer un mayor coste económico o incluso una reducción de las prestaciones, debido a lo limitado del mercado de CC y/o a un deficiente diseño de las cargas.

Para utilizar cargas convencionales de corriente alterna los sistemas fotovoltaicos han de incorporar inversores CC/CA. Estos dispositivos transforman la corriente continua suministrada por la batería del SF en corriente alterna, adecuada para ser utilizada por cargas de CA (Ilustración 23). Adicionalmente se utilizan inversores que permiten inyectar la energía eléctrica generada por dispositivos fotovoltaicos a la red eléctrica. Pero este punto es tratado en el Tema 5.
Los inversores de sistemas fotovoltaicos aislados pueden suministrar tensiones de salida de 110 V o 220 V dependiendo del tipo de carga utilizada. El inversor es también un seguidor de máxima potencia del panel solar, como será tratado en el siguiente apartado. En el mercado fotovoltaico es posible encontrar una amplia variedad de inversores, con tecnologías que suministran formas de onda alterna similares a las de la red convencional. Por supuesto también es posible encontrar inversores de mala calidad.

El inversor ideal ha de tener un precio contenido, ser fiable, generar un bajo nivel de armónicos y ser muy eficiente para su rango de potencia de salida. El autoconsumo se produce cuando no existe una carga en funcionamiento pero el inversor gasta una cierta cantidad de energía. Su valor ha de ser tan bajo como sea posible. El inversor ha de ser capaz de resistir transitorios, durante los cuales se producen picos de demanda. Asimismo ha de ser capaz de resistir accidentes eléctricos como por ejemplo cortocircuitos.

La bondad del inversor a la hora de transformar la energía en CC que recibe en energía en CA que suministra a su salida está dada por su rendimiento, es decir por la potencia de salida dividida entre la potencia a la entrada del inversor. Una característica típica de los inversores es que su rendimiento es bajo si las cargas a las que alimenta tienen valores menores que la potencia nominal del inversor.
Ilustración 24). Cuando la potencia consumida por la carga es similar a la potencia nominal del inversor se tendrá un rendimiento típicamente por encima de 85 % mientras que si la carga consume mucha menos potencia es posible que la eficiencia del inversor baje hasta un valor de un 30 %.

Seguidores de máxima potencia

Como se explicó en el Tema 1 existe un punto de la curva intensidad voltaje en el cual la producción de **potencia es máxima** (Ilustración 25). Si en nuestro sistema fotovoltaico fuéramos capaces de hacer operar los paneles solares en este punto, sería posible aprovechar mejor la energía de los paneles y consiguientemente reducir el tamaño y el precio del sistema generador. Para ello es necesario ajustar la impedancia del generador y la batería (que tienen diferentes curvas IV) mediante dispositivos convertidores de CC/CC **capaces de encontrar el punto de máxima potencia del generador solar. Estos dispositivos se denominan seguidores de máxima potencia**, o por sus siglas en ingles MPPT (Maximum Power Point Tracking).

Ilustración 25: Curva IV de generador solar, potencias máximas reales y potencias suministradas por un seguidor de máxima potencia

El uso de estos dispositivos tiene sentido cuando la energía obtenida compensa la inversión necesaria. Cada caso particular ha de ser analizado, si bien se recomienda su uso para capacidades de generación por encima de 1 kWp, en sistemas sin baterías y por encima de 10 kWp para sistemas con baterías. usualmente el seguidor de máxima potencia suele estar integrado en el regulador de carga o el inversor CC/CA

Resto del sistema

Además de los componentes descritos hasta aquí, existen una serie de **componentes y partes, procedimientos o conceptos que tienen gran importancia a efectos del correcto funcionamiento de una instalación**. Estos conceptos se engloban en lo que en inglés se denomina “Balance of systems”, es decir “lo que resta” aparte de los componentes fundamentales. Estamos hablando del transporte del sistema (que tiene gran importancia cuando los componentes han de ser desplazados a lugares remotos), el empaquetado (directamente relacionado con el transporte), el espacio físico donde se va a realizar la instalación, el cableado, interruptores, conectores, contenedores para las baterías etc. Todos estos aspectos contribuyen a la calidad, durabilidad, coste del sistema y lo que es más importante a la seguridad y satisfacción del usuario.

El empaquetado y transporte de los componentes contribuye directamente a la puesta en marcha del sistema. Un transporte azaroso (lo cual es más que probable dado lo aislado de algunos lugares de
instalación) o un empaquetado deficiente puede contribuir a que algunos componentes lleguen a su destino dañados o incluso inservibles.

El cableado que une los diferentes componentes del sistema ha de ser de la calidad y grosor adecuado, considerando la longitud de los cables y la corriente a transportar. Se recomienda que la caída de tensión en los cables no supere un 3 % de la tensión nominal de la instalación. En la bibliografía se han citado caídas por encima de este límite en un 50 % de las instalaciones analizadas.

Los interruptores que se intercalan entre los diferentes componentes del sistema suelen ser una fuente de problemas debido a la baja calidad o inadecuación para el rango de tensiones y corrientes que se precisan. De la importancia de este componente da cuenta una cita bibliográfica sobre un proyecto de electrificación rural en el cual un 81 % de los interruptores falló produciendo daños en otros componentes del sistema.

Las baterías han de ser situadas en un lugar adecuado protegidas de los elementos atmosféricos y evitando que se produzcan acumulaciones de gas o que una eventual explosión se produzca y afecte a los usuarios. El lugar ha de estar ventilado y drenado para el caso de que se produzca un vertido del electrólito. El equipo electrónico tiene que ser protegido de los elementos y mantenido a temperaturas moderadas. Si el SF no tiene tensiones por encima de 60 V CC no se precisan especiales medidas de seguridad ni conexión tierra.

Cargas de los sistemas fotovoltaicos

La energía solar tiene un gran número de aplicaciones, además de la mera inyección de electricidad en la red eléctrica. En este apartado se exponen las aplicaciones más comunes. Una carga de un sistema eléctrico es el componente de ese sistema que consume electricidad para suministrar un servicio. La mayoría de las aplicaciones están referidas a un tipo concreto de carga, si bien hay aplicaciones de la ESF que incorporan un gran número de cargas diferentes, como por ejemplo un hospital rural. En este apartado se tratará la iluminación, el bombeo de agua, la refrigeración de vacunas y otros usos o cargas.

Iluminación

La iluminación es una de las aplicaciones más extendidas de la ESF constituyendo un suministro básico, ya que usualmente es la primera y casi imprescindible aplicación de un sistema fotovoltaico. Esta aplicación puede ser encontrada en solitario o junto con otras cargas.

Existen varias modalidades de iluminación fotovoltaica que se caracterizan por su aplicación final y por la tecnología de iluminación utilizada. Podemos encontrar linternas fotovoltaicas, Solar Home Systems (SHS), iluminación vial e iluminación de áreas (ambas mediante farolas fotovoltaicas), señalizaciones tanto marinas como terrestres, señales de tráfico y pequeñas aplicaciones de la iluminación, como por ejemplo iluminación de jardines, llaveros luminosos y una variedad infinita.
La **linterna fotovoltaica** es una aplicación muy interesante de la ESFV y constituye una de las más útiles pero a la vez problemáticas en medios rurales de regiones en desarrollo. Estas linternas consisten en una batería, una lámpara fluorescente o LEDs y su correspondiente electrónica para el acondicionamiento de potencia (regulador de carga y balasto) todo ello integrado en una luminaria transportable. El equipo incluye un generador solar que puede estar integrado o no en el cuerpo de la luminaria y eventualmente una estructura de soporte. En las denominadas linternas de mano, el panel solar está integrado en el mismo cuerpo, con el resto de componentes. Las linternas fotovoltaicas constituyen una alternativa barata a sistemas fotovoltaicos de mayor tamaño y coste. La facilidad de transporte contribuye a su difusión. Además algunas linternas permiten suministrar la electricidad de su batería a otras cargas de bajo consumo, como por ejemplo pequeñas radios. En muchos casos los usuarios que tienen un SF mayor muestran interés en adquirir linternas fotovoltaicas, pues lo consideran un medio flexible y muy transportable de satisfacer necesidades e iluminar. Sin embargo un análisis de la bibliografía existente y sobre todo de modelos reales muestra que en muchos casos las linternas tienen un diseño, materiales y ensamblaje que deja mucho que desear y una capacidad de iluminación por debajo de lo que se esperaría de sus lámparas.

Ejemplo

El caso de las linternas muestra la versatilidad de las aplicaciones de la energía fotovoltaica, pues es utilizada...en el control de pestes. Todos hemos observado que los insectos son atraídos por la luz. Aquí entra en juego la linterna fotovoltaica usada como trampa de luz, al ser situada en un recipiente que contiene queroseno o agua. Los insectos que vuelan alrededor de la linterna, eventualmente se posan y quedan atrapados en el líquido del recipiente.

Dejando aparte el tema de las linternas y retornando a la generalidad de las lámparas como cargas en SF, **ha de utilizarse el tipo adecuado a cada aplicación con la salvedad de que la eficiencia energética es una prioridad.** Así pues las lámparas incandescentes quedarían, al menos en teoría, desterradas del uso en instalaciones fotovoltaicas. Si bien en SF se utilizan casi todos los tipos de lámparas disponibles, hasta ahora las **lámparas fluorescentes han dominado el panorama de la mayoría de las aplicaciones.** Los **LEDs**, al paso que mejoran su calidad y precio van penetrando aceleradamente en el mercado fotovoltaico (Ilustración 27).
Bombardeo de agua, para consumo humano y animal y riego de cosechas. Se trata de transportar el agua desde el lugar donde se encuentra, ya sea un pozo o la superficie hasta el lugar de distribución y uso. La instalación de un sistema de bombeo requiere de un estudio previo de la capacidad de suministro del acuífero de modo que nunca sea excedida su capacidad de reposición. La sobreexplotación puede resultar desastrosa al agotarse el recurso o producirse la salinización del acuífero. Ha de considerarse la instalación de un tanque de almacenamiento y su tamaño dependiendo de la cantidad de agua requerida y de la autonomía deseada (Ilustración 28). Existen tablas que suministran los consumos por persona para cada tipo de servicio (agua de boca, ducha etc.). En el caso de los animales también se dispone de información de la cantidad necesaria diariamente para cada especie. Lo mismo se aplica a cada tipo de cosecha. Estos datos han de ser tan adaptados como sea posible a los usos culturales y las condiciones climáticas del lugar donde se pretenda realizar la instalación.

Es más frecuente tener que bombar de agua desde pozos que obtenerlo de la superficie. El sistema de bombeo está constituido por el motor y la bomba propiamente dicha. El motor transforma la energía eléctrica en energía mecánica que es transferida a la bomba para su transformación en energía hidráulica. El motor puede funcionar en corriente alterna o en corriente continua. Los motores de corriente continua tienen la ventaja de poder ser conectados directamente al sistema de generación de energía. Del lado negativo encontramos el desgaste de la escobillas del motor. Los motores de corriente alterna son más eficientes y baratos que los de corriente continua pero para su funcionamiento requieren un dispositivo de arranque y un inversor CC/CA.
La elección del conjunto motor/bomba está determinada por la profundidad desde la cual se ha de extraer el agua, la altura a la que ha de elevarse (a un deposito, canal de irrigación etc.) y las pérdidas de presión en las tuberías y demás componentes del sistema. Hay dos tipos de bombas: las de desplazamiento positivo y las centrífugas. Las primeras se basan en movimientos de un pistón que a su vez desplaza el agua, mientras que las bombas centrífugas usan aspas para mover el agua. Las bombas de desplazamiento positivo son apropiadas para bombear pequeños flujos a alta presión mientras las bombas de centrífugas pueden bombear volúmenes mayores a menor presión.

Alternativamente, las bombas pueden clasificarse por su situación con respecto al agua que bombean (Ilustración 28): Tenemos la bombas sumergibles útiles para pozos profundos y estrechos, las bombas superiores que pueden ser instaladas flotando en la superficie de grandes masas de agua y las bombas de superficie que están situadas a nivel del suelo, cerca del agua. Las bombas sumergibles pueden ser de desplazamiento positivo o centrífugas trabajando tanto en alternas como en continua, si bien las que trabajen en alternas requerirán el uso de inversor CC/CA. Las bombas sumergibles de desplazamiento positivo operadas en CC requerirán inversor CC/CC. Las bombas flotantes constan de un motor de CC conectado directamente al generador solar. Las bombas de superficie pueden ser tanto centrífugas como de desplazamiento positivo. En este caso el resto de componentes depende de la elección de un motor de CC o de CA. Además de los dispositivos anteriormente descritos, existe otra configuración denominada sistema de bombeo con convertidor de frecuencia, que consiste en una bomba centrífuga con un motor de inducción asincrónica, conectado a un convertidor de frecuencia que ajusta el voltaje y la frecuencia suministrada al motor. Estos dispositivos permiten utilizar bombas convencionales disponibles en el mercado AC. También es posible diseñar sistemas de bombeo con baterías. En estos casos ha de ser instalado un regulador de carga. Con este tipo de diseño, se podrá disponer de agua a pesar de la ausencia de radiación solar.

Refrigeración de vacunas

Existen grandes áreas del Planeta a las cuales no ha llegado aún la red eléctrica y donde se dan condiciones sanitarias lejos de lo ideal, con el añadido de que no han sido erradicados agentes que propagan el contagio de enfermedades. En estos lugares la ESFV se convierte en un fuerte aliado para la conservación de vacunas. Aunque existen sistemas de refrigeración cuya fuente de energía es diferente a la fotovoltaica y con una inversión inicial menor que la necesaria para un sistema fotovoltaico, en muchos casos esta última energía es más barata si se evalúa todo el ciclo de vida de los sistemas en liza. Además se precisa tener una alta fiabilidad, un mantenimiento mínimo así como un tiempo de vida largo para el conjunto del sistema. Teniendo en cuenta estas características el sistema fotovoltaico de refrigeración es preferible frente a sistemas alimentados por keroseno, diesel o gas.

El sistema fotovoltaico de refrigeración debe ser capaz de mantener la temperatura interna del refrigerador en el rango de 0º C a 8º C. Ha de ser capaz de congelar agua que permita disponer de hielo para transportar vacunas a lugares que no estén cercanos al centro de salud. Para conseguir estos cometidos, el aislamiento térmico de los refrigeradores fotovoltaicos ha de ser mayor que en los refrigeradores convencionales pues evitar pérdidas térmicas supone ahorrar energía y por tanto minimizar el tamaño de la instalación fotovoltaica. Las capacidades típicas de los refrigeradores oscilan entre los 4 litros y los 200 litros. El refrigerador usualmente es alimentado a 12 V o 24 V de CC de manera que el sistema fotovoltaico consiste en el generador solar, la batería, el regulador de carga y por supuesto el refrigerador. El sistema fotovoltaico de refrigeración ha de ser diseñado de tal modo que pueda trabajar sin interrupción en las estaciones del año de menor insolación. Si el sistema de refrigeración es solo una parte de un sistema fotovoltaico que incluye otras cargas, se ha de disponer de una batería específica, dedicada únicamente al refrigerador. Esto
hará difícil que en caso de fallo del sistema se pierdan las vacunas. El sistema ha de tener una alarma para avisar de posibles pérdidas del suministro eléctrico al refrigerador.

Otras cargas y usos

Protección catódica: Este uso de la ESFV protege de la corrosión componentes metálicos, sobre todo tuberías. Las estructuras metálicas han de ser mantenidas a un potencial negativo respecto a la tierra o aire. Usualmente se utiliza en estructuras relacionadas con la conducción de petróleo y gas. **Telecomunicaciones**: La ESFV es utilizada para suministrar potencia a sistemas de radiotransmisión, repetidores telefónicos etc.

![Ilustración 29: Faro alimentado con energía solar y señal de tráfico.](image)

Señalización tanto en tierra como marítima: En esta aplicación el SF suministra energía a equipos de señalización usualmente de tipo óptico. Esto permite una gran independencia de los sistemas, con un mínimo de mantenimiento. Una aplicación muy extendida son los faros marítimos (como el de la Ilustración 29) que incluyen sistemas con generadores fotovoltaicos de cientos de Wp y baterías con capacidades de cientos de Ah. También hay sistemas pequeños como boyas marítimas con generadores de solo decenas de Wp. Un uso muy extendido de fotovoltaica son las señales de tráfico iluminadas mediante ESF que constituyen por sí mismos pequeños sistemas fotovoltaicos autónomos completos, con panel, batería, electrónica e iluminación (Ilustración 29). **Productos de consumo**: Pequeñas aplicaciones como calculadoras relojes, luces de jardín etc.

Estándares Internacionales

La sociedad necesita de normalización. Cuando conectamos un dispositivo USB precisamos que la distancia entre cada conector macho-hembra sea la misma y que cada cable conduzca la señal que uno espera. Los casquillos de lámparas han de enroscar convenientemente, las hojas han de tener el tamaño adecuado para no atascar las impresoras (y a veces se atasan) y así hasta el infinito. ¡Cuántos problemas nos crea tener en casa un componente exótico de difícil sustitución o costosa reparación! En este sentido se hacen indispensables las normas, no solo como guía para los fabricantes sino como garantía para el consumidor de que un producto se ajusta al estado del arte comúnmente admitido.
De estas consideraciones se deriva el concepto de norma, como especificación técnica que han de cumplir los productos, procesos o servicios, de manera que se garantice la funcionalidad requerida, su calidad y su seguridad. Para que está normativa tenga utilidad ha de poder ser garantizada por un laboratorio o entidad acreditada. Si bien la normativa no es necesariamente de obligado cumplimiento, un consumidor informado preferirá un producto que tenga esta garantía a un producto sin ella. La norma ha de ser pública y debe haber sido elaborada con la participación de las partes interesadas y en un proceso en el que contribuyan entidades de reconocido prestigio y conocimiento del objeto de la norma.

Organismos de normalización y laboratorios acreditados

Existen toda una serie de organismos reconocidos internacionalmente que se dedican a la tarea de desarrollar normativas sobre las cuestiones más diversas que podamos imaginar. En el caso de la ESFV los organismos de interés son International Electrotechnical Comisión (IEC o CEI en castellano) de ámbito internacional, el Comité Europeo de Normalización Electrotécnica (CENELEC) de ámbito europeo y finalmente en el ámbito español la Asociación Española de Normalización y Certificación (AENOR). A través de AENOR los expertos españoles participan en los comités técnicos internacionales que se ocupan de establecer los textos de las normas. Las entidades interesadas desarrollan por tanto los textos de las Normas CEI a nivel internacional, Normas EN de ámbito europeo y Normas UNE de ámbito español. Usualmente las normas de ámbito superior son traducidas y adaptadas desde el ámbito internacional al ámbito nacional.

Existen toda una serie de laboratorios capaces de suministrar servicios de normalización como laboratorio acreditado por diferentes entidades nacionales o internacionales. Estos laboratorios disponen de infraestructuras, personal cualificado, procedimientos y material adecuados para efectuar los ensayos. En cuanto a laboratorios acreditados a nivel internacional, cabe citar Underwriters Laboratories (EEUU), TUV Rheinland (Alemania) y TÜV SÜD America, VDE Testing and Certification Institute (Alemania), Fundación CENER-CIEMAT (España) etc.

Una cuestión interesante... ¿Quién normaliza al normalizador? Es decir ¿quién garantiza (con un proceso por supuesto ha de ser normalizado), cuales son las entidades que están capacitadas para aplicar una norma? En el caso de España se trata de la Entidad Nacional de Acreditación (ENAC) que como trasladamos textualmente de su folleto informativo es “la entidad designada...como único Organismo Nacional de Acreditación, dotado de potestad pública para otorgar acreditaciones, de acuerdo con lo establecido en el Reglamento (CE) n. 9765/2008 del Parlamento Europeo y el Consejo, de 9 de Julio de 2008”. Un esquema similar puede darse en cualquier país del mundo o de modo alternativo, empresas de acreditación de ámbito internacional pueden suministrar los servicios de acreditación a productos de diferentes países.

En España existen varios laboratorios acreditados por ENAC, que suministran diversos servicios de certificación relacionados con la energía solar fotovoltaica: AT4 WIRELESS, ENERTIS SOLAR, Fundación CENER-CIEMAT e INTA. Esta lista es la existente al día que se redactó este texto, de manera que su actualización requiere la consulta a ENAC. Hay que tener en cuenta que los laboratorios acreditados lo están para normativas concretas o incluso para partes de ciertas normativas.
Normas Fotovoltaicas

Existe una amplia variedad de normativas que afectan a diversos aspectos de la energía solar fotovoltaica. Estas normativas no son de obligado cumplimiento, si bien garantizan al consumidor que el producto reúne las condiciones que requieren las normas que le hayan sido aplicadas. Vamos a hacer un resumen de la normativa que afecta de un modo más directo a diferentes componentes de los sistemas fotovoltaicos. Por cuestiones de espacio no se cita una gran cantidad de normativa que sería de aplicación a componentes de los sistemas fotovoltaicos como por ejemplo a los equipos de iluminación y un largo etc. En la siguiente lista, las normas citadas como EN corresponden únicamente al ámbito europeo.

La norma que rige la medida de la curva IV de un módulo fotovoltaico es la CEI 60904. Además existen toda una serie de normas relacionadas con esta y que se refieren a correcciones debidas a temperatura e irradiancia, cuestiones relativas a dispositivos solares utilizados como referencia en las medidas y su calibración, características de la distribución espectral de referencia, requisitos exigibles y clasificación de simuladores solares, etc. También se dispone de una norma para la medida del rendimiento y clasificación energética de los módulos (CEI 61853).

La norma CEI 61215 se aplica a módulos de silicio cristalino y pretende garantizar que los módulos resistirían determinadas condiciones climáticas (también definidas por norma, como temperaturas, granizo etc.) así como determinar sus características eléctricas (por ejemplo potencia máxima). Además la norma CE 61345 trata de garantizar cierta resistencia de los módulos a la exposición a radiación ultravioleta. La norma CEI 61646 es análoga a la CEI 61215 pero de aplicación a tecnologías de lámina delgada. Para los sistemas de concentración se tiene la CEI 62108.

Las condiciones de seguridad de los módulos, tanto en fabricación como durante su operación son objeto de la norma CEI 61730. Existe una batería de normas que se centran en la información que el fabricante suministra sobre módulos, células y obleas (EN 50380, EN 50461 y EN 50513 respectivamente). Otras normas se refieren a la monitorización energética de sistemas fotovoltaicos e intercambio de datos y análisis (CEI 61724), terminología y símbolos (CEI 61836). No son cuestiones menores, puesto que la normalización de la terminología, simbología y formato de datos hace posible la comparación de sistemas fotovoltaicos.

En cuanto al resto de componentes del sistema (donde se exceptúa el generador solar) existe una norma que analiza los requerimientos del BOS (CEI 62093), el rendimiento y operación de controladores de carga de baterías (CEI 62509) y seguridad de conectores utilizados en las instalaciones fotovoltaicas (EN 50521). Existen normas CEI específicas para la medida del rendimiento de sistemas y acondicionamiento de potencia (CEI 61683), la seguridad de convertidores de potencia (EN 62109), información suministrada sobre inversores (EN 50524) y su eficiencia (EN 50530) y rendimiento y evaluación de sistemas de bombeo (CEI 61702 y CEI 62253).

En lo que se refiere a centrales conectadas a red tenemos una norma sobre la interfaz de conexión a la red eléctrica (CEI 61727), la medida de las características IV de campos fotovoltaicos de silicio cristalino (CEI 61829) y otra norma sobre la documentación necesaria, la puesta en marcha de la central y la inspección de sistemas (CEI 62446).

Finalmente, los sistemas autónomos están recogidos en una norma que se ocupa de analizar la idoneidad de su diseño y su rendimiento en diferentes condiciones climáticas (CEI 62124).
Investigue cual es la entidad que realiza en su país las funciones AENOR y ENAC enEspaña, partiendo de la información suministrada por CEI en su página web:

En caso de no encontrar su país pruebe en:

¿Que normativas mencionadas en el presente apartado tienen una versión en su país?.

Encuentre una empresa de su país que oferte la certificación de la norma CEI 61215 o su equivalente nacional. ¿Está acreditada esa empresa para certificar esa norma y por quien?.

Resumen del capítulo

En este capítulo han sido descritos los principales componentes de un sistema fotovoltaico, con especial atención a los sistemas fotovoltaicos autónomos. Asimismo se ha dado una visión de a importancia de la normalización, las principales normas que se refieren a la tecnología fotovoltaica y las entidades implicadas en los procesos de normalización.
Capítulo 4. Sistemas fotovoltaicos autónomos y miniredes

El papel de los sistemas fotovoltaicos en la mejora de la calidad de vida de parte de la población mundial es indiscutible. Esa mejora va de la mano del acceso a la electricidad que además puede contribuir a ralentizar la emigración de población rural de países en desarrollo hacia áreas urbanas incapaces de gestionar adecuadamente semejante avalancha humana. En los países en desarrollo y especialmente en sus áreas rurales la cantidad de población es alta y el suministro de energía mediante medios convencionales se encuentra con grandes obstáculos debido a la carencia de infraestructuras adecuadas. Las fuentes tradicionales de energía (como por ejemplo madera) sufren tal presión que no es posible que satisfagan la creciente demanda a largo plazo, dando lugar a problemas adicionales como la deforestación, desertificación, la pérdida de tierra arable etc. La ESFV es una fuente de energía disponible localmente (la mayoría de los países en desarrollo dispone de un alto nivel de insolación) cuyos componentes pueden ser adquiridos e instalados progresivamente a medida que cambien las necesidades, con métodos de operación y mantenimiento bastante simples y una gran capacidad para adaptarse a las peculiaridades culturales de cada lugar.

Sistemas fotovoltaicos autónomos

Un sistema fotovoltaico autónomo es un conjunto de cargas y dispositivos eléctricos y electrónicos cuyos consumos energéticos se ven satisfechos por un generador solar fotovoltaico. Se caracteriza por no estar conectado a la red eléctrica convencional. En este tema analizaremos los principales tipos de sistemas fotovoltaicos autónomos, su disposición totalmente aislados o formando miniredes y finalmente tocaremos algunos conceptos básicos de su diseño y dimensionado. Estos sistemas pueden incorporar inversores CC/CA, lámparas halógenas, pequeñas incandescentes o LEDs, refrigeración de vacunas, radio y TV, equipos de bombeo, etc.

Solar Home Systems (SHS) y Lighting Kits

Se conoce por Solar Home System (SHS) a un sistema fotovoltaico autónomo diseñado para satisfacer las necesidades de una vivienda. Este término se utiliza cuando el sistema está compuesto de un generador fotovoltaico y un sistema de acumulación de moderado tamaño y normalmente se encuentra instalado en el medio rural, con un bajo nivel de desarrollo y sin acceso a la red eléctrica. No existe un término castellano específico para los SHS, utilizándose de modo generalizado el nombre en inglés o cualquiera de las variantes que vengan a la imaginación de cada autor o distribuidor (sistemas autónomos, electrificación rural, kit solar etc.).

Un producto que se encuentra frecuentemente en el Mercado fotovoltaico es el Kit de iluminación o lighting kit. También se suele denominar kit fotovoltaico o alguna variación de estas denominaciones. Estos productos consisten en un conjunto fijo de componentes fotovoltaicos...
con características específicas que son ofertados por el distribuidor como un sistema fotovoltaico “hecho”. En realidad un lighting kit es un SHS montado y distribuido con elementos invariables. Estos sistemas ofrecen principalmente iluminación junto a algún servicio adicional, especificado o no (radio, TV etc.). Tanto los SHS como los lighting kits constan aproximadamente de los mismos componentes, según puede verse en la Ilustración 21 que incluye un inversor CC/CA de 220 V y lámparas alimentadas por CA. Usualmente los SHS y lighting kits más pequeños carecen de inversor o cargas en CA. Los componentes imprescindibles son el generador solar compuesto de más o menos paneles según el tamaño del sistema, el sistema de acumulación, el regulador de carga, lámparas y sus balastos en caso de ser fluorescentes o LEDs y sus sistemas de acondicionamiento de potencia, cables, interruptores y equipo de ensamblaje. Pueden existir equipos o cargas adicionales.

La Ilustración 30 muestra los componentes aún sin ensamblar de un lighting kit, que integra la caja de la batería con el regulador. Los sistemas fotovoltaicos autónomos en general y en particular los SHS y lighting kits pueden ser clasificados según su consumo energético, tal como parece en la Tabla 3.

<table>
<thead>
<tr>
<th>Clase</th>
<th>Consumo medio diario</th>
<th>Cargas típicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><25 Wh</td>
<td>Linterna fotovoltaica</td>
</tr>
<tr>
<td>2</td>
<td><50 Wh</td>
<td>Lighting Kit</td>
</tr>
<tr>
<td>3</td>
<td><150 Wh</td>
<td>SHS para iluminación y radio</td>
</tr>
<tr>
<td>4</td>
<td><210 Wh</td>
<td>SHS para iluminación, radio y TV</td>
</tr>
<tr>
<td>5</td>
<td><450 Wh</td>
<td>SHS para iluminación, radio, TV y refrigeración</td>
</tr>
<tr>
<td>6</td>
<td>>450 Wh</td>
<td>Sistema comunitario</td>
</tr>
</tbody>
</table>

Debido a la calidad de la mayoría de los paneles solares que se fabrican en la actualidad usualmente y salvo excepciones su elección para un sistema fotovoltaico autónomo no representa ningún problema, excepto si el sistema ha sido dimensionado de modo incorrecto.

Una carga importante de los sistemas autónomos es la lámpara. Su coste puede suponer entre un 5 % y un 10 % del coste total del sistema. La sustitución de lámparas fluorescentes y balastos durante veinte años de operación del sistema se estima que puede incrementar el coste de sistema en un 13 %. Problemas encontrados con las lámparas fluorescentes y sus balastos son la prematura avería de alguno de estos componentes y nivel de emisión luminosa por debajo de lo esperado. Usualmente la causa de estos problemas suele ser la baja calidad de los balastos. Es importante que el sistema
fotovoltaico consta de mecanismos que protejan de la inversión de polaridad, protección contra cortocircuitos y en el caso de los balastos un sistema de protección eléctrica contra rotura u operación sin lámpara fluorescente. También es deseable comprobar si existe incompatibilidad electromagnética entre el balasto y otras componentes o cargas. Como ejemplo, no es en absoluto infrecuente que las interferencias generadas por un balasto perturben la recepción del receptor de radio.

En algunos proyectos en los cuales fueron instalados SHS el usuario demandaba, para determinados usos, niveles de iluminación por debajo de lo suministrado por las lámparas fluorescentes. Un ejemplo que se da en lugares tan dispares como Brasil o Nepal es el interés por dejar una luz encendida durante toda la noche. Con una lámpara fluorescente convencional, esto podría provocar un déficit energético del sistema. Sin embargo una lámpara incandescente de 2 W o una pequeña lámpara LED pueden satisfacer esta necesidad sin poner en riesgo el equilibrio energético del sistema. Estas pequeñas lámparas recuerdan a los usuarios las velas convencionales o las lámparas de keroseno que utilizaban antes de poseer un sistema fotovoltaico. Este ejemplo muestra la importancia de valorar correctamente las necesidades de los usuarios de sistemas fotovoltaicos.

En la actualidad, las lámparas LED mejoran sus prestaciones rápidamente (adaptabilidad, eficiencia flujo luminoso, credibilidad de las características declaradas) de modo paralelo a la reducción de su precio de adquisición. En este sentido es de prever que del mismo modo que ocurre en el mercado convencional, los LED compitan con las lámparas fluorescentes en el mercado fotovoltaico. Más difícil es prever cuándo llegará a producirse la preponderancia de los LEDs instalados en SF.

Iluminar espacios más amplios como escuelas, hospitales etc. difiere de la iluminación en SHS sobre todo en la escala del sistema. Además puede incorporar un mayor número de componentes y cargas. La disposición de las luminarias jugará también un importante papel, pues cuestiones como la uniformidad de la iluminación y la iluminancia en el plano de trabajo tendrá una relevancia acusada.

El usuario de sistemas aislados ha de ser capaz de realizar algunas unas tareas de mantenimiento así como poseer una mínima formación sobre el correcto uso de los SF. En concreto es importante que conozca que cargas puede utilizar y en qué medida. Ha de ser capaz de rellenar de agua las baterías, evitar el sombreado de los paneles etc.

Una aplicación importante de la ESFV en medios rurales son las estaciones de carga de baterías. En estos lugares el usuario no dispone de generador solar pero puede acudir a la estación de carga y recargar su batería a cambio de dinero. Estas estaciones pueden recibir la energía eléctrica desde la misma red convencional, un sistema generador diesel o gasolina y por supuesto el caso que aquí nos interesa desde un generador fotovoltaico.

Miniredes

Además de los sistemas fotovoltaicos autónomos que dan servicio a una vivienda, existe otra estrategia en electrificación rural, consistente en **suministrar electricidad a un conjunto de viviendas, unidas mediante una minired eléctrica.** El término en inglés es **mini-grid.** La cuestión a valorar es ¿qué tipo de instalación es preferible, minired o SHS? (Ilustración 31). Una primera aproximación al problema consiste en considerar cual es el coste de cada tipo de instalación. El coste de una minired se incrementa con la distancia entre viviendas, pero a medida que las viviendas se encuentran más cercanas, puede resultar más económico optar por la minired. Por otro lado los factores sociológicos, culturales y psicológicos han de ser tenidos en cuenta. Sin embargo no
es posible encontrar en la bibliografía una metodología general para integrar todos estos aspectos en la elección entre minired y SHS. Esto se debe en parte a la relativa carencia de información sobre la evolución de las instalaciones reales. La información disponible permite plantear algunas de las ventajas y desventajas de ambas técnicas:

SHS

- En muchos casos, la inversión de capital inicial es demasiado alta para que una familia pueda realizar esta inversión. Este problema se resuelve mediante financiación externa o créditos.
- Los SHS son sistemas modulares de manera que pueden ser ampliados en función de los requerimientos de los usuarios.
- El panel solar puede ser montado en el tejado de la casa, alejado del alcance del ganado o posibles ladrones y sin ocupar espacio útil.
- No es necesario un sistema de distribución de la energía con contadores, como en el caso de miniredes evitando gastos administrativos. Al no existir un sistema de distribución, se evitan las conexiones desautorizadas, que se pueden dar en el caso de miniredes.
- El fallo del sistema afecta solamente a una vivienda.

Miniredes

- La inversión inicial es alta pero dependiendo de la distancia entre las viviendas puede ser menor que la del conjunto equivalente de SHS (mayores distancias equivalen a un coste mayor de las miniredes).
- Después de un tiempo de operación y a pesar de que el sistema haya sido diseñado en base a ciertos perfiles de consumo de la comunidad, el perfil de la demanda termina por superar la capacidad de generación. Esto se debe al uso de cargas no autorizadas. El hecho de tratarse de un sistema comunitario hace que algunos usuarios olviden la responsabilidad individual en el consumo de potencia realizando consumos abusivos.
- Una ventaja (que puede convertirse en desventaja si se tienen en cuenta los anteriores hechos) es que la energía está menos limitada para un usuario particular que en el caso de los SHS. La energía que no es consumida por un usuario puede ser utilizada por otro.
- El equipamiento de las miniredes es más sofisticado que en el caso de los SHS, de modo que el mantenimiento y reparación es más costoso.
-Las miniredes facilitan la instalación de servicios comunitarios como por ejemplo iluminación pública, lavadoras etc.
-El sistema puede afrontar mejor que el SHS algunas averías o incidentes como por ejemplo el fallo de cierto número de paneles solares o baterías. En la parte negativa, señalar que un fallo total o parcial del sistema afecta a un mayor número de usuarios que en el caso del SHS.

Conceptos de dimensionado

Hemos aprendido que existe una amplia variedad de componentes en los sistemas fotovoltaicos, que pueden ser combinados en diversas configuraciones, con un mayor o menor número de componentes. Además disponemos de un gran número de “aparatos” (cargas) que pueden ser alimentados eléctricamente por nuestro sistema fotovoltaico. Finalmente la cantidad de radiación solar disponible, la temperatura y demás características climatológicas determinan la cantidad de energía que podemos obtener de un generador fotovoltaico concreto. Parece por tanto que disponemos de las piezas del puzzle, pero: ¿Seremos capaces de elegir qué parte del puzzle nos interesa? ¿Sabemos cuántas piezas y de qué tamaño? La primera pregunta corresponde a la cuestión del diseño, mientras la segunda cuestión corresponde al dimensionado de los sistemas fotovoltaicos.

Dimensionado Básico

En lo que sigue, vamos a concentrarnos en el diseño y dimensionado de sistemas fotovoltaicos autónomos, que en principio incluye un mayor número de componentes que un sistema conectado a red. En el Tema 5 se analizará el dimensionado de sistemas conectados a red. Así, podremos entender la cantidad de factores que entran en juego. Además existen sistemas híbridos, que incorporan un generador fotovoltaico junto con generadores diesel, eólicos etc. A la hora del diseño y dimensionado este tipo de sistemas son complejos, especialmente porque hay que atender a la disposición del recurso (sol, viento, combustible etc.) y al resultado económico del peso relativo de cada tecnología de generación. Dada la extensión disponible presentamos un ejemplo muy simple de dimensionado que toca los conceptos básicos que nos interesa destacar.

Ejemplo

Si queremos montar un sistema de bombeo, hemos de decidir: Si precisamos bombear agua de modo continuo, si preferimos almacenar el agua o los excesos de energía generada y el tipo y disposición de las bombas de agua. Tendremos que elegir que opción resulta más apropiada a la aplicación a un menor coste económico. Estas cuestiones constituyen el diseño del sistema. Pero además, una vez elegido el diseño hemos de evaluar el tamaño de los componentes del sistema según el diseño elegido e incluso comparar el tamaño de diferentes diseños. Esta parte del trabajo se denomina dimensionado.

No vamos a disponer de la misma cantidad de energía solar en el sur de Patagonia o Noruega que en Madrid o México. Este es el principal factor que va a determinar el tamaño del corazón de nuestro sistema fotovoltaico, es decir los paneles solares. El segundo factor determinante del tamaño de nuestro sistema es la cantidad de energía que pretendemos consumir. No puede
ser igual el tamaño de panel de una pequeña linterna fotovoltaica equipada con un LED y que va a ser utilizada un par de horas al día que el tamaño del generador fotovoltaico que va a ser utilizado en un hospital rural. Además es posible que nuestro sistema fotovoltaico incorpore cargas que funcionan tanto en corriente alterna como en corriente continua. Se ha de tener en cuenta el tamaño del sistema de acumulación de energía, la variabilidad de la energía disponible a lo largo del año y la eficiencia de los diversos componentes del sistema. Los dispositivos de acondicionamiento energético (inversores, convertidores CC/CC, seguidores de máxima potencia) tienen unas pérdidas que están reflejadas en su eficiencia y autoconsumo y han de ser contempladas en el dimensionado. Así mismo las baterías tienen asignados los correspondientes valores de eficiencia de carga y descarga. También es importante tener en cuenta hasta que punto estamos dispuesto a arriesgar la duración de la batería. Esto lo reflejaremos estableciendo una profundidad de descarga máxima para la batería. En previsión de épocas de baja producción energética debidas a periodos de mal tiempo o avería, ha de establecerse un número de días de autonomía. Finalmente es necesario realizar un análisis de los costes de las posible alternativas de diseño y dimensionado. Obviamente no todo el mundo puede financiar (ni es deseable) la instalación de un generador solar de un tamaño inmenso equipado con un sistema de acumulación enorme.

Todos estos factores han de considerarse paso a paso a la hora de efectuar un dimensionado. A continuación exponemos los fundamentos del dimensionado básico utilizado en versiones que apenas difieren en la notación (¡afortunadamente!) en la mayoría de cursos y libros técnicos de fotovoltaica. Antes de continuar leyendo el texto que sigue, recomendamos que intente deducir las fórmulas que se exponen al final del razonamiento, mediante la resolución de los sencillos ejemplos que se proponen.

¿Qué cantidad de energía voy a consumir y cómo influyen las eficiencias de inversores regulador de carga y batería?

Imagine que está pensando en instalar un sistema fotovoltaico en una vivienda aislada. Tiene tres habitaciones que pretende iluminar con lámparas que consumen diferentes potencias durante tiempos diferentes. Las tres lámparas funcionan a 12 V de corriente continua. La primera habitación será iluminada con una lámpara de 8 W durante 1 h diaria, la segunda es una lámpara de mesa en una sala de estudio que consume 15 W durante 2 horas al día y la tercera lámpara ilumina un cuarto de estar durante 4 horas diarias con un consumo de 40 W. Además se dispone de un televisor que funciona 2 horas al día y que consume 108 W. Sin embargo el televisor funciona en corriente alterna y ha de ser alimentado por un inversor DC/AC que tiene una eficiencia de un 90 %. Nuestro inversor tiene una línea de CC y hace las veces de regulador de carga para las lámparas. Además la eficiencia carga-descarga de la batería es de un 85 %. ¿Cuál será la energía diaria que precisará, incluyendo el consumo de las cargas y las pérdidas del inversor y la batería?

El consumo será el producto de las potencias por las horas de funcionamiento diario y en el caso del televisor habrá que aumentar este consumo proporcionalmente a la eficiencia del inversor:

\[
(8 \text{ W} \times 1 \text{ h/día} + 15 \text{ W} \times 2 \text{ h/día} + 40 \text{ W} \times 4 \text{ h/día} + (108 \text{ W} \times 2 \text{ h/día})/0.9)/0.85 = 515 \text{ Wh/día}
\]

No se han incluido las pérdidas por seguimiento de máxima potencia y regulación de carga de las baterías sencillamente porque no se ha suministrado esa información en el enunciado del problema. Tampoco se han considerado pérdidas en la línea de CC, pues el enunciado es ambiguo y no queda...
claro si el 90 % de eficiencia del inversor afecta a las cargas de CC. Este tipo de situaciones, en las cuales no se dispone de toda la información que sería deseable, no es nada infrecuentes en la práctica real de un dimensionado básico.

Expresemos este ejemplo de un modo formal. Siendo \(L \) la energía diaria requerida, \(L_{cc} \) el consumo de las cargas en corriente continua, \(L_{ac} \), \(\eta_{cc} \) la eficiencia del regulador/convertidor en continua, \(\eta_{ac} \) la eficiencia del convertidor en alterna y \(\eta_{b} \) la eficiencia carga/descarga de la batería, se tiene la relación:

\[
L = \left(\frac{L_{cc}}{\eta_{cc}} + \frac{L_{ac}}{\eta_{ac}} \right) \eta_{b}
\]

Esta es por tanto la energía que se estima que va a ser consumida cada día. A partir ella es posible calcular el tamaño de la batería. Para ello hemos de decidir cuántos días es imprescindible que nuestra batería pueda suministrar energía, incluso si los paneles solares permanecieran inactivos debido a mal tiempo o avería. Este número de días se denomina autonomía del sistema fotovoltaico. Además ha de tenerse en cuenta que conviene que la batería no sea descargada más allá de cierto nivel, denominado profundidad de descarga máxima. También se puede hablar en términos del concepto complementario de estado de carga de que el porcentaje de energía que tiene la batería. Finalmente pueden registrarse pérdidas de energía debidas a otros factores como por ejemplo las caídas óhmicas en los cables de conducción eléctrica, interruptores etc.

Ejemplo

Nuestra casa fotovoltaica necesita una batería. Tendremos por tanto que calcular su tamaño antes de realizar el pedido. Supondremos que en nuestra zona, se producen periodos nublados que pueden durar cinco días y en los cuales la producción de energía de nuestros paneles se reduce drásticamente. Tomaremos cuatro días como tiempo de autonomía por que aún en días nublados se generará cierta cantidad de energía. Además hemos ojeado las hojas de características técnicas de las baterías de nuestro suministrador y hemos encontrado que para la mayoría de los modelos el fabricante recomienda un estado de carga mínimo de un 30 % antes de degradar significativamente la batería, sin comprometer el tiempo de vida. Supondremos además que las pérdidas de energía en los cables, interruptores e imprevistos, asciende como mucho a un 5 %.

¿Cual será el tamaño de la batería en Wh?

4 días x 515 Wh/día / (1-0.3) x (1-0.05) = 2796 Wh

¿Si la batería es de 12 V, cual será su tamaño en Ah?

2796 Wh / 12 V = 233 Ah

Este “tamaño” de la batería se denomina técnicamente capacidad de la batería

En el cálculo anterior, el factor 1-0.3 se debe a la profundidad de descarga, mientras el factor 1-0.05 se debe a las pérdidas en cables e imprevistos. La profundidad de descarga \(DOD \) en porcentaje se puede expresar en función del estado de carga \(SOC \) en porcentaje como:

\[
DOD = 100 - SOC
\]
En el ejemplo se han tomado valores de SOC y DOD normalizados a la unidad. Escribiendo la fórmula correspondiente al cálculo del ejemplo anterior, si denominamos C a la capacidad de la batería en amperíos hora, N el número de días de autonomía, η a las pérdidas en cables y otros factores se tendrá y V_n la tensión nominal de las baterías:

$$C = \frac{NL}{DOD/\eta V_n}$$

Quizás alguien haya pensado, -¡y con razón!- ¿pero dónde están los paneles? Vamos a ello. En el tema de radiación solar y estructuras de soporte se ha entrado en mayor detalle en las cuestiones relativas a la radiación solar así como en las posibilidades de la orientación de las estructuras de soporte y sus consecuencias. Por supuesto que la elección de un tipo u otro de estructura de soporte tiene consecuencias tanto en la producción como en el coste del sistema. En nuestro análisis vamos a considerar estructuras fijas que maximicen la producción del peor mes del año. La idea es que durante ese mes peor, el tamaño del generador solar permita satisfacer el consumo de energía que hemos establecido, es decir que nuestros paneles solares sean capaces de cargar la batería suficientemente.

Introducimos un concepto muy extendido, el de horas de sol pico, en sus siglas HSP, que se define como el número medio de horas diarias en una superficie horizontal a una irradiancia de 1000 W/m².

Ejemplo

Hemos consultado los datos de la Agencia Estatal de Meteorología (AEMET), encontrando que en la zona donde se encuentra nuestra casa disponemos de una radiación media horizontal diaria en el mes de Enero de 1250 Wh/m². ¿De cuantas horas solares pico diarias en superficie horizontal, HSP dispondremos en nuestro generador fotovoltaico durante el mes de Enero?

$$1250 \text{ Wh/m²}/1000 \text{ W/m²}=1.250 \text{ h diarias en el mes de Enero}$$

El concepto de vatío pico es una manera rápida de evaluar la producción de cada vatío pico de panel solar a partir del valor de HSP en una cierta localización. Puesto que un panel solar se mide en condiciones estándar a 1000 W/m², la energía que genera un panel solar de α vatios pico durante un día coincide con α veces HSP en Wh. Por supuesto que esta aproximación no considera efectos como la temperatura del panel u otros descritos en el Tema 1. Sin embargo permite una aproximación razonable al problema y veremos enseguida que este concepto tan simple nos ayudará a efectuar nuestro dimensionado.

Para simplificar, vamos a suponer que tenemos tres posibles inclinaciones de nuestra estructura de soporte. Por otro lado disponemos de los valores de radiación media mensual diaria en nuestra zona y a la inclinación propuesta. Usualmente, esta información se extrae de los datos de AEMET en España si bien ha de utilizarse algún modelo que a partir de la irradiancia en superficie horizontal permita estimar la irradiancia a la inclinación deseada (ver Tema 2). En otros países será necesario recurrir a fuentes de información equivalentes a AEMET o simular la irradiancia.
Puesto que la radiación solar tiene una variabilidad temporal que afecta tanto de un modo continuo como estacional, usualmente se toma como referencia la irradiancia media diaria mensual o el valor medio diario mensual de HSP para determinar el tamaño del sistema generador. Para cada uno de los doce meses del año, dividiendo la energía diaria requerida L entre el valor de HSP correspondiente a cada mes y a varias inclinaciones obtendremos la potencia pico del generador solar necesario para satisfacer esa demanda energética. De esos doce valores habrá que tomar el máximo a cada inclinación o en caso contrario no será posible suministrar la energía necesaria en el mes de menor radiación. Esto nos da el mes crítico a cada inclinación. A continuación de entre esos valores máximos encontrados a cada inclinación se tomará la potencia más baja que garantiza el servicio en el mes peor (mes crítico) para esa inclinación que será la elegida para nuestra instalación. Hay que tener en cuenta que en un dimensionado más elaborado habría que considerar valores del consumo energético tan detallados como sea posible.

Ejemplo

Nos encontramos en una latitud cercana al ecuador, 14.5 ° Sur. La siguiente tabla muestra los valores de la irradiancia media mensual diaria para una localización en superficies inclinadas 45°, 15° y 0° que son las únicas que permite adoptar la estructura de soporte de la cual disponemos. En un ejemplo anterior se estimó que la L tiene un valor de 515 Wh/día. Se calcula la relación L/HSP para cada mes y se destaca en negrita el valor más alto:

<table>
<thead>
<tr>
<th>Mes</th>
<th>HSP-0°</th>
<th>HSP-15°</th>
<th>HSP-45°</th>
<th>$L/HSP-0°$</th>
<th>$L/HSP-15°$</th>
<th>$L/HSP-45°$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>4.1</td>
<td>4.6</td>
<td>4.9</td>
<td>124</td>
<td>113</td>
<td>106</td>
</tr>
<tr>
<td>Febrero</td>
<td>5.1</td>
<td>5.6</td>
<td>5.9</td>
<td>101</td>
<td>91</td>
<td>87</td>
</tr>
<tr>
<td>Marzo</td>
<td>5.6</td>
<td>5.9</td>
<td>5.8</td>
<td>92</td>
<td>87</td>
<td>89</td>
</tr>
<tr>
<td>Abril</td>
<td>5.9</td>
<td>6.0</td>
<td>5.4</td>
<td>87</td>
<td>86</td>
<td>95</td>
</tr>
<tr>
<td>Mayo</td>
<td>5.4</td>
<td>5.3</td>
<td>4.5</td>
<td>95</td>
<td>98</td>
<td>115</td>
</tr>
<tr>
<td>Junio</td>
<td>5.6</td>
<td>5.3</td>
<td>4.3</td>
<td>91</td>
<td>96</td>
<td>119</td>
</tr>
<tr>
<td>Julio</td>
<td>5.9</td>
<td>5.5</td>
<td>4.4</td>
<td>88</td>
<td>93</td>
<td>118</td>
</tr>
<tr>
<td>Agosto</td>
<td>5.8</td>
<td>5.5</td>
<td>4.5</td>
<td>89</td>
<td>93</td>
<td>114</td>
</tr>
<tr>
<td>Septiembre</td>
<td>6.1</td>
<td>6.0</td>
<td>5.1</td>
<td>85</td>
<td>86</td>
<td>100</td>
</tr>
<tr>
<td>Octubre</td>
<td>5.8</td>
<td>5.9</td>
<td>5.5</td>
<td>89</td>
<td>87</td>
<td>94</td>
</tr>
</tbody>
</table>
Los meses críticos resultan ser enero para 0º y 15º de inclinación y junio para 45 º de inclinación. La menor potencia a instalar se obtiene en Enero con 15 º de inclinación. Inclinaremos nuestro generador resulta ser 15 º y tendrá una potencia pico de 113 Wp

Nuestro ejemplo ha resultado en una combinación de banco de baterías a 12 V con una capacidad de 233 Ah y un generador solar de 113 Wp. En la práctica han de elegirse los componentes reales según la disponibilidad del mercado de manera que los valores de potencia pico y capacidad de la batería instalados pueden diferir de los valores de dimensionado.

Un dimensionado básico más completo que el presentado aquí ha de atender a otras variables, como por ejemplo la orientación idónea del sistema generador con un mayor número de inclinaciones que las tres aquí presentadas mediante el método del mes peor (que en nuestro ejemplo se ha considerado un dato fijo de partida) y de las características de los sistemas de acondicionamiento de potencia (inversores y reguladores de carga), que va a depender esencialmente del número de cargas que queramos utilizar de un modo simultaneo. Para encontrar ejemplos de dimensionado simple algo más completos que el aquí expuestos, el estudiante ha de remitirse a la bibliografía.

Dimensionado de sistemas híbridos

Existen sistemas fotovoltaicos con diseños más complejos que el del ejemplo propuesto, pues incorporan diversas fuentes de generación de energía, como por ejemplo sistemas que junto a los paneles solares tienen generador eólico o diesel. En estos casos la evaluación del recurso y el balance de los diversos tipos de generadores complican notablemente el cálculo. El peso relativo de la capacidad de generación de cada uno de los tipos de generador tiene una influencia notable en el coste del sistema.

Algunas Ideas de Dimensionado Avanzado

Un dimensionado avanzado del sistema fotovoltaico ha de abarcar en mayor o menor extensión cuestiones tales como la descripción detallada de los siguientes elementos: La radiación solar, el generador fotovoltaico incluyendo no solo la radiación sino la temperatura, los sistemas de acondicionamiento de potencia (inversores de alterna y continua, seguidores de máxima potencia etc.) y las diferentes cargas del sistema. Como ejemplo sería deseable una descripción muy detallada del consumo energético que puede diferir notablemente según la época del año.

El dimensionado avanzado parte de la posibilidad de perder la capacidad de suministrar energía a las cargas en algún momento del tiempo de uso de la instalación, es decir que sea imposible satisfacer las necesidades energéticas. Se introduce el concepto de probabilidad de pérdida de carga LLP (del inglés loss-of-load probability) que se define como el valor estimado a lo largo del tiempo de uso de la instalación del déficit energético entre la demanda de energía. En estas condiciones, el dimensionado avanzado tiene como objetivo establecer el tamaño óptimo relativo del sistema de generación frente al sistema de acumulación para un valor determinado de LLP. Ese valor óptimo relativo vendrá dado por a solución más económica, puesto que la LLP ha sido fijada de antemano. Para mayor información se remite al alumno a las referencias bibliográficas.
Resumen del capítulo

En este capítulo han sido descritas las principales aplicaciones de los sistemas fotovoltaicos autónomos y los tipos de sistemas destinados a satisfacer cada una de las demandas. Hemos analizado las ventajas e inconvenientes de instalar un cierto número de pequeños sistemas fotovoltaicos independientes frente a la posibilidad de crear pequeñas redes eléctricas que satisfagan a estos usuarios. Para finalizar se han dado algunos conceptos de diseño y dimensionado de instalaciones fotovoltaicas autónomas.
Capítulo 5. Sistemas Fotovoltaicos Conectados a Red

La generación fotovoltaica ha experimentado una gran expansión en los últimos tres lustros. Una parte importante de este desarrollo se debe a la instalación masiva de sistemas fotovoltaicos conectados a la red eléctrica. Funcionan bajo un esquema más sencillo que los sistemas aislados, puesto que no precisan acumulación. Entre sus ventajas se encuentra la reducción de costes de transporte, al acercar la generación a los puntos de consumo. Así mismo, cumplen una función de regulación, puesto que hacen coincidir los máximos de producción con los de demanda.

Por un lado, las instalaciones de baja y media potencia (usualmente entre 5 y 100 kWp) operan sobre tejados de naves industriales o sobre terrazas de edificios multiuso (colegios, hoteles, apartamentos, etc.). Son instalaciones de esquema sencillo donde se busca minimizar la operación y el mantenimiento. Por ello, suelen ser de soporte fijo, con varios pequeños inversores o un único inversor de tamaño medio y un sistema de generación basado en tecnologías consolidadas, predominando el silicio cristalino. Además, abundan en este tipo las instalaciones piloto o de prueba, que buscan confirmar el rendimiento de nuevas tecnologías.

Por otro lado, las grandes plantas fotovoltaicas multimegawatio son instalaciones de producción centralizada, cuya infraestructura, nivel de potencia instalada, control sobre la operación y calidad de mantenimiento se asemeja cada día más a las centrales de producción convencional. Utilizan distintos modos de seguimiento solar e incluso de concentración. Las tecnologías clásicas basadas en el silicio siguen predominando, pero otras como el Diseleniuro de Cobre-Indio (CIS) o el Telururo de Cadmio (CdTe) están demostrando su alta competitividad y fiabilidad.

A este avance contribuye de manera esencial el desarrollo y madurez de una industria de fabricación de componentes principales y auxiliares cada vez más especializada. Así, los módulos fotovoltaicos evolucionan hacia la máxima eficiencia y fiabilidad. Los inversores, de altísima eficiencia, cada vez cuentan con mejores funciones de regulación ante la natural variabilidad del recurso solar. El diseño mismo de la planta incorpora cada vez más elementos que aumentan su rendimiento y capacidad de reacción ante fallos. Por último, un notable avance en los sistemas de monitorización, comunicaciones y tratamiento de datos permiten, en la mayoría de las plantas, conocer a tiempo real gran parte de los parámetros que influyen en su funcionamiento y seguridad.

En este capítulo se presentarán algunos aspectos concretos relacionados con las particularidades que pueden tener lugar cuando se asocian los módulos fotovoltaicos entre sí, y las protecciones que se utilizan en estos casos. A continuación pasaremos a definir los parámetros de funcionamiento de las planas fotovoltaicas conectadas a red, su dimensionado, su dimensionado y los aspectos técnicos y legales. Finalmente se mostrarán algunos ejemplos de plantas FV.
Asociaciones de módulos fotovoltaicos. Descripción y problemas

En las instalaciones fotovoltaicas y grandes plantas se requiere el empleo de más de un módulo para satisfacer las demandas energéticas de la misma, por lo que se recurre a la asociación de módulos en serie y paralelo hasta obtener los valores de voltaje y corriente deseados. El conjunto de todos los módulos FV que constituyen el sistema de generación de la instalación recibe el nombre de **Campo de Paneles**. Normalmente los módulos fotovoltaicos se interconectan entre sí formando unidades que se suelen denominar **Grupos**, las cuales a su vez se conectan para formar el Campo de paneles fotovoltaico.

En temas anteriores, al hablar de la curva característica del generador fotovoltaico, se ha supuesto para mayor simplicidad que el módulo está constituido por células idénticas, con lo cual los valores de voltaje aparecen multiplicados por el número de células en serie, y los de corriente por el número de células en paralelo. En la práctica, debido a la dispersión de los parámetros de las células en el proceso de fabricación, y a la posibilidad de que no todas ellas trabajen en las mismas condiciones de irradiancia y temperatura, es frecuente que las células o módulos que constituyen un generador fotovoltaico no operen en las mismas condiciones.

Algunos de estos factores son evitables poniendo especial cuidado en el diseño del sistema, pero otros resultan impredecibles e inevitables, por lo que se ha de recurrir a protecciones en el sistema. Los dos efectos principales que produce esta dispersión de parámetros son:

- Una reducción de la potencia máxima del generador fotovoltaico
- Algunas células pueden llegar a convertirse en cargas, disipando la energía producida por las demás.

El efecto debido a la propia dispersión de los parámetros de las células en el proceso de fabricación, es lo que se conoce como pérdidas por desacoplo o dispersión de parámetros (mismatch losses en inglés). Los fabricantes de módulos fotovoltaicos clasifican las células de forma que las que componen un mismo módulo no tengan una dispersión grande en sus valores de I_{sc}, para minimizar estas pérdidas. De la misma manera, una clasificación de los módulos que componen un campo de paneles fotovoltaicos por categorías en función de su corriente en el punto de máxima potencia, para luego asociar en serie sólo módulos que estarían dentro de la misma categoría, supone una considerable reducción de las pérdidas por desacoplo. En general estos factores están muy estudiados en base a los datos de producción de muchos lotes de módulos fotovoltaicos, existiendo expresiones que relacionan los parámetros principales de los módulos con distribuciones estadísticas.

Otros efectos como pudiera ser el sombreado parcial, por el contrario, son en muchos casos inevitables, y son los responsables de que una o varias células sombreadas inviertan su polaridad, convirtiéndose por lo tanto en una carga que disipará toda la energía producida por el resto de las células que se encuentren asociadas en serie. Si la potencia disipada tiene un valor elevado la célula aumentará considerablemente su temperatura, pudiendo llegar a su destrucción total. Éste fenómeno es el que se conoce con el nombre de Punto Caliente.

La temperatura que alcanza una célula cuando está sombreada está relacionada con la potencia disipada en la misma y puede calcularse de manera aproximada según:

$$T_c = T_{amb} + \xi_m P_{dis} \quad (15)$$
donde T_c es la temperatura de la célula, T_{amb} la temperatura ambiente, P_{dis} la potencia disipada y ξ_m una constante relacionada con la conductividad térmica del módulo que puede calcularse en función de la superficie de la célula S y la Temperatura de Operación Nominal de la Célula TONC como:

$$\xi_m \left(^\circ C / W / m^2 \right) = \frac{TONC(^\circ C) - 20}{S \cdot 800 \left(W / m^2 \right)}$$

(16)

Diodos de paso

Para evitar los problemas que puede ocasionar una iluminación no uniforme, la presencia de sombras u otros factores que pueden hacer que una parte del generador fotovoltaico trabaje en distintas condiciones que el resto se recurre al empleo de protecciones. Los diodos de paso se colocan en paralelo en asociaciones de células FV en serie, para impedir que todos los elementos de la serie se descarguen sobre una célula que resulte sombreada.

La Ilustración 32 muestra esquemáticamente el modo de funcionamiento de un diodo de paso. Aquí se han colocado diodos sobre cuatro ramas de células conectadas en serie. El diodo se conecta con polaridad opuesta a la de las células, de manera que si estas trabajan correctamente, por el diodo no pasa corriente. Si una de las tiras en serie resulta severamente sombreada de forma que invierta su polaridad, la polaridad del diodo cambiará, con lo que puede conducir ofreciendo un camino fácil para que pase la corriente generada por el resto de los grupos de células. El diodo de paso tiene por tanto dos funciones, en primer lugar ofrecer un camino alternativo para la corriente en caso de que se invierta la polaridad de la rama, pero además, limita el número de célula que se descargarían sobre una sola en caso de que ésta fuera sombreada. De esta manera, dependiendo del número de células que cubra un diodo, se puede limitar la potencia que se disiparía en una sola célula en el peor de los casos.

La mayoría de los fabricantes de módulos incorporan diodos de paso en tomas intermedias en las cajas de conexiones de sus módulos, siendo las configuraciones más usuales las mostradas en la Ilustración 33 para un módulo de 36 células conectadas en serie. La parte izquierda de la figura muestra una configuración típica para un módulo con dos cajas de conexiones, una para el terminal positivo y otra para el negativo, y donde se ha instalado un diodo en cada una de las cajas de conexión. En caso de sombreado severo, la corriente circulará por un grupo de 12 células y luego a través del diodo, es decir, 2/3 del módulo son puenteados. La parte derecha muestra otro diseño posible, donde se introducen dos diodos en la caja de conexiones, uno sobre cada 18 células. En caso...
de que una rama se deteriorase o fuera severamente sombreada, la corriente pasaría por el otro grupo de 18 células trabajando correctamente. Por el contrario, si solamente fuera una célula la deteriorada o sombreada, ésta sólo disiparía la potencia de las otras 17 células que están en la misma rama, limitándose así la cantidad de potencia disipada y por tanto la elevación de temperatura.

Ilustración 33. Posición típica de los diodos de paso en un módulo de 36 células con dos cajas de conexiones (izquierda) o una caja de conexiones (derecha)

Por último, los diodos de paso que se conecten en las ramas en serie han de ser capaces de soportar los valores de corriente y voltaje que ocasionalmente pudieran circular por ellos sin elevar su temperatura excesivamente ni deteriorarse. Las normativas internacionales que incluyen ensayos para los diodos de paso en las cajas de conexiones de los módulos suelen forzar el paso de 1.25 veces la Isc de la rama para una temperatura de módulo en torno a los 75°C, y la temperatura del diodo no debe sobrepasar los límites establecidos en sus características técnicas. Con respecto al voltaje, los diodos que suelen emplearse suelen ser con valores lo suficientemente altos, ya que a priori no se conoce el voltaje de circuito abierto del sistema.

En la actualidad, la gran diversidad de tipos de módulos fotovoltaicos y de configuraciones para los mismos ha provocado una distribución de diodos diferente de las convencionales cada 18 ó 24 células, pudiendo encontrarse desde diodos cada 8 células hasta cada 36. Además, las elevadas corrientes que tiene los módulos fotovoltaicos hoy en día (debido al aumento del tamaño de la célula) ha hecho necesario que los fabricantes se replanteen el tipo de diodo a colocar en sus módulos, ya que han de ser capaces de soportar estas corrientes operando continuamente sin un calentamiento excesivo de la caja de conexiones que pudiera, a su vez, deteriorar el módulo.

Principio de funcionamiento

Para ilustrar el funcionamiento del diodo de paso vamos a imaginar una rama de 18 células conectadas en serie. De estas 18 hay 17 que operan correctamente, y una de las células que está parcialmente sombreada. La curva I-V de la rama se obtiene, como ya hemos visto, agregando los voltajes de cada una de las células a igualdad de corriente. El resultado lo tenemos en la Ilustración 34. Podemos ver cómo la curva inversa de la célula sombreada empieza a mostrar su efecto en la curva de la rama a partir del punto en que la corriente de la rama supera la corriente de cortocircuito de la célula sombreada. Dependiendo del tipo de diodo, el voltaje de activación puede variar entre -0.5V a -0.8V. El diodo comenzará a funcionar cuando la suma de los voltajes de las otras 17 células (la rama de 17 células en la Ilustración 34) menos el voltaje inverso de la célula defectuosa sea superior a este voltaje de activación del diodo.
En células convencionales está calculado que si se inserta un diodo cada 18 células y una célula es defectuosa o está sombreada, ésta se polarizará aproximadamente hasta -10V, mientras que si el diodo se coloca cada 24 células podría llegar a -13 V. En general, se puede calcular mediante la expresión:

\[(\text{Nº de células en serie}) \times 0.5 + \text{(voltaje de activación del diodo de paso)}\]

Donde el factor 0.5 representa el voltaje para el punto de máxima potencia de la célula.

Diodos de bloqueo

Cualquier sistema fotovoltaico aislado deberá tener un sistema para controlar los flujos de corriente con el fin de prevenir las corrientes inversas desde la batería hasta el campo de paneles y/o proteger las ramas débiles o deterioradas. Los diodos de bloqueo se utilizan para realizar esta función. Las dos funciones principales de los diodos de bloqueo son:

1. **Prevenir que la batería se descargue sobre el módulo por la noche.**
2. **Bloquear los flujos de corriente inversos de ramas en paralelo deterioradas sombreadas durante el día.**

Diodos de bloqueo para prevenir descargas nocturnas de la batería

En los sistemas FV que emplean baterías, sería posible que la batería se descargase durante toda la noche a través del módulo si no se emplean protecciones. Este efecto no sería muy pernicioso para el módulo, pero ocasionaría una pérdida preciosa de energía del banco de baterías.

La Ilustración 35 muestra un ejemlplo de la curva de iluminación y de oscuridad de un generador fotovoltaico, donde se han indicado los flujos de corriente. Durante la noche la batería mantiene su voltaje de operación, y la corriente que pasa por el módulo va en sentido opuesto. La cantidad de energía que se pierde depende en primer lugar del voltaje de circuito abierto del generador y el punto de operación de la batería, y además de la forma de la curva de oscuridad del módulo. Para evitar estas pérdidas de energía se recurre a la inserción de diodos de bloqueo conectados en serie entre el generador fotovoltaico y la batería. Estos diodos permiten el flujo de corriente desde el módulo hasta la batería durante el día, pero bloquean el paso inverso de corriente de la batería al campo.
fotovoltaico. No obstante hay que tener en cuenta que el paso de corriente a través del diodo durante el día produce una caída de tensión que puede variar entre 0.4 a 0.7 V dependiendo del diodo.

(2) Diodos de bloqueo para impedir flujos de corriente de ramas en paralelo durante el día.

Cuando se conectan en paralelo varias ramas de módulos fotovoltaicos, puede darse el caso que una de ellas resulte severamente sombreada o deteriorada, y que la corriente de otra rama se derive hacia ésta. El empleo de diodos de bloqueo conectados en serie en cada una de las ramas en paralelo evita el paso de corriente en sentido inverso, “aislándolos” las ramas defectuosas (véase figura 18). Normalmente en este tipo de configuraciones, como la que se muestra en la figura 18, los diodos de bloqueo se sitúan todos ellos en una caja de conexiones externa, donde llegan los cables positivos procedentes de cada uno de los grupos del campo separadamente, y un cable de mayor grosor en el que se agrupan los terminales negativos.

Aquí, como en el caso anterior, los diodos también suponen una caída de tensión en torno a los 0.6-0.7V, y deben ser capaces de soportar la corriente de cortocircuito y el voltaje de circuito abierto del campo fotovoltaico completo. Como norma general se toma que puedan soportar dos veces la \(I_{SC} \) y \(V_{OC} \) del campo fotovoltaico.
Parámetros de Funcionamiento

Parámetros Básicos

Los siguientes parámetros se utilizan para definir el comportamiento de un sistema fotovoltaico conectado a red. Mediante su determinación, se hace posible la comparación entre los rendimientos de distintas instalaciones y tecnologías de módulo utilizadas.

- **Array Yield, Y_L (h)**, se define como la energía producida por el sistema fotovoltaico por unidad de potencia instalada. Se expresa por tanto como: \(Y_L = E_{GFV} / P_{STC} \) (kWh/kW).
- **Final Yield, Y_F (h)**, expresa la producción final, esto es, la energía vertida a la red o a los consumos por unidad de potencia-pico instalada \(Y_L = E_{FV} / P_{STC} \) (kWh/kW).
- **Reference Yield, Y_R**, mide las horas equivalentes de sol, mediante la relación entre la irradiación recibida y la irradiancia en Condiciones Estándar de Medida (\(G^* = 1000 \text{ W/m}^2 \)). Si se refiere por ejemplo a un período mensual, vendría dado como \(Y_R = (G_d) / G^* \).
- **Performance Ratio, PR**, relaciona el rendimiento final con el rendimiento de referencia. Expresado en tanto por ciento, representa el grado de aprovechamiento de la instalación. Viene dado por \(PR = Y_F / Y_R = E_{FV} / (P_{STC} \cdot Y_R) \).
- **Productividad de Referencia Corregida en Temperatura**. Corrige el efecto de las pérdidas térmicas. Por tanto, \(Y_{RT} = Y_R \left[1 - \left(T_C - T^*_C \right) \right] \), donde \(\gamma \) es el coeficiente de temperatura del array, \(T_C \) es la temperatura media del array y \(T^*_C \) es igual a 25 °C.
- **Rendimiento característico corregido en temperatura**. Descuenta las pérdidas producidas por el efecto de la temperatura. Viene dado por \(PR_T = Y_F / Y_{RT} = E_{FV} / (P_{STC} \cdot Y_{RT}) \).

Pérdidas y Rendimientos

Junto a la determinación de los rendimientos, el cálculo de las pérdidas resulta fundamental en la detección de áreas de mejora. Los principales parámetros de pérdidas son los siguientes:

- **Pérdidas de captura distribuidas en la parte de continua**, dadas por: \(L_C = Y_R - Y_A \).
- **Pérdidas de captura térmica**, \(L_{CT} = Y_R - Y_{RT} \).
- **Pérdidas eléctricas**, \(L_{CE} = Y_{RT} - Y_A \).
- **Pérdidas de captura totales**, \(L_C = L_{CT} + L_{CE} \).
- **Rendimiento de captura total**, \(\eta_C = Y_A / Y_R = Y_R - L_C / Y_R = 1 - L_C / Y_R \).
- **Pérdidas de conversión**, \(L_I = Y_A - Y_F \).
- **Rendimiento de conversión**, \(\eta_{EI} = E_{FV} / E_{GFV} = Y_F / Y_A = Y_A - L_I / Y_A \).
Dimensionado del Sistema Fotovoltaico

Previamente a la instalación de un sistema fotovoltaico conectado a la red, resulta preciso dimensionar sus componentes. Los principales son el generador fotovoltaico (módulos o paneles solares), el inversor o inversores, el cableado y las protecciones. Correctamente dimensionados, la instalación presentará un correcto funcionamiento y un adecuado nivel de seguridad.

Generador fotovoltaico

El generador está compuesto de asociaciones serie y paralelo de módulos fotovoltaicos. Pueden considerarse, en cuanto a su tensión de trabajo, dos configuraciones diferentes:

- Configuración de puesta a tierra. Una conexión activa puesta a tierra. Evita fluctuaciones de tensión.
- Configuración flotante. Puede ser más segura en instalaciones integradas en edificios.

En referencia al valor de la tensión máxima del generador, es preciso resaltar que cuanto más alta sea ésta, más se reducen las corrientes y por tanto las pérdidas de potencia. Por otro lado, una correcta clasificación por corrientes de máxima potencia, a partir de los “flash reports”, contribuye a reducir las pérdidas por dispersión, las cuales aumentan con el número de módulos en serie.

La tensión máxima de trabajo viene limitada por la capacidad de los equipos y por el cableado utilizado. Adicionalmente, cuestiones de seguridad pueden aconsejar la limitación de la tensión máxima. Se recomienda limitar la tensión de circuito abierto del generador, en función de la tensión máxima de trabajo a un valor dado por: $V_{oc} = \frac{V_{MAX}}{1.25}$.

Inversor

El inversor realiza el cambio de corriente continua, generada por los módulos, a corriente alterna, absorbida por la red eléctrica. Los principales parámetros de dimensionamiento del inversor son los siguientes:

- Potencia máxima. Se define el factor de dimensionado como: $F_{DV} = \frac{P_{MAX,I}}{P_{G,STC}}$. Debe ser mayor en climas más soleados, y menor en zonas de altas latitudes. Se busca que el inversor funcione en su zona de alta eficiencia, que se corresponde con las potencias altas.
Eficiencia de conversión. Debe ser alta incluso a bajos valores de potencia \(p_0 = \frac{P_{AC}}{P_{MAX,1}} \). La eficiencia del inversor puede ser representada, en función del parámetro \(p_0 \), por la siguiente relación:

\[
\eta(p_0) = \frac{P_{AC}}{P_{DC}} = \frac{p_0}{p_0 + (k_0 + k_1p_0 + k_2p_0^2)}
\]

siendo sus parámetros

\[
k_0 = \frac{1}{9\eta_1}, \quad k_1 = -\frac{4}{3\eta_1} + \frac{33}{12\eta_{0.5}} - \frac{5}{12\eta_{0.1}} - 1 \quad y \quad k_2 = \frac{20}{9\eta_1} - \frac{5}{2\eta_{0.5}} + \frac{5}{18\eta_{0.1}},
\]

en función de las eficiencias \(\eta_1 = \eta(p_0 = 1) \), \(\eta_{0.5} = \eta(p_0 = 0.5) \) y \(\eta_{0.1} = \eta(p_0 = 0.1) \).

Compatibilidad eléctrica con el generador. El rango de tensiones de entrada debe estar entre las mínimas producidas (p.ej. durante una bajada repentina de la irradiancia estando el generador a alta temperatura) y máximas (valores altos de irradiancia y bajos de temperatura, p.ej. tras el amanecer en días fríos). Debe admitir las corrientes producidas durante picos de irradiancia, p.ej. durante el paso de nubes de transición, que pueden llegar a 1250 W/m².

Arranque y sobrecarga. Deben arrancar cuando el sistema fotovoltaico genere una potencia superior a las pérdidas de conversión. Ante las sobrecargas, debe ser capaz de desplazar la tensión de trabajo desde \(V_{mpp} \) hasta \(V_{oc} \), para bajar la potencia generada.

Compatibilidad electromagnética y otras características. Bajo contenido en armónicos, resistencia a las alteraciones producidas en la red, baja emisión de radiofrecuencias y protección ante el funcionamiento en isla (inyección de potencia en condiciones de fallo de red).

Cableado y conexiones

Se dimensionan a partir de tres criterios: la máxima caída de tensión admisible, la tensión máxima de trabajo y su resistencia ante situaciones de sobreintensidades y cortocircuitos.

Máxima caída de tensión admisible. En función de los reglamentos propios de cada país, se recomienda una caída máxima de 1% en el lado de continua y de 0,5% del lado de alterna.

Así, las secciones mínimas de uno y otro lado vendrán dadas por:

\[
S = \frac{nL\cdot I_{G,MPP}^*}{\sigma V_{NOM}^* \Delta V}, \quad con \quad n = 2 \quad para \quad \text{DC} \quad y \quad n = \sqrt{3} \quad para \quad \text{AC},
\]

where \(L \) is the length of the cable, \(I_{G,MPP}^* \) the current of maximum power in STC (Standard Test Conditions), \(\sigma \) the conductivity of the conductor, \(V_{NOM} \) the voltage nominal of work and \(\Delta V \) the drop of voltage admisible.

Máxima tensión de trabajo. La determina el tipo de aislamiento del conductor. Es preciso tener en cuenta tanto las condiciones de intemperie (temperatura, humedad, exposición a ultravioleta) como la seguridad, de especial importancia en instalaciones situadas en locales de pública concurrencia.

Reacción ante sobreintensidades y cortocircuitos, que exige a los conductores soportar dichas situaciones durante el tiempo de reacción de las protecciones. A este efecto, debe
efectuarse un correcto dimensionamiento de interruptores, diferenciales, fusibles, conexiones, etc.

Finalmente, el sistema de supervisión monitoriza los parámetros climáticos, las condiciones de funcionamiento y rendimiento del sistema fotovoltaico.

Aspectos Técnicos y Legales

Como resulta natural, la instalación fotovoltaica está obligada a cumplir la legislación referente a Baja Tensión de cada Estado. Como criterio general, no deberá producir ni disfunciones en la red eléctrica, ni producir condiciones de trabajo potencialmente peligrosas.

A este respecto, debe evitarse especialmente el funcionamiento en isla, situación que puede darse cuando se operan inversores autoconmutados, ya que pueden llegar a mantener tensión en la línea de distribución incluso cuando ésta se desconecta de la red, por ejemplo para realizar trabajos de mantenimiento o reparación.

Por otro lado, las protecciones deben estar correctamente dimensionadas para garantizar el correcto funcionamiento y seguridad de la instalación. Esto se traduce en un interruptor general manual accesible a la empresa distribuidora y de suficiente poder de corte ante cualquier tipo de cortocircuito en la red. El interruptor automático diferencial protege a las personas ante cualquier derivación producida en el sistema generador o de transporte en continua. El interruptor automático, dotado de un relé de enclavamiento, desconectará la instalación ante una pérdida de tensión o frecuencia en la red. Será accionado por las correspondientes protecciones de máxima y mínima tensión y frecuencia.

En referencia a la calidad del servicio, es común exigir la utilización de inversores trifásicos para potencias superiores a 5 kW. Adicionalmente, el factor de potencia global debe ser próximo a la unidad, aspecto que debe ser considerado y corregido en su caso.

Instalaciones fotovoltaicas en Centroamérica y Sudamérica

En este apartado se pretende ilustrar el importante auge que las instalaciones fotovoltaicas conectadas a la red están teniendo en la actualidad en Sudamérica y el área Centroamericana. México, Chile y Brasil son los países donde más y mayores instalaciones se han construido hasta la fecha. Sin embargo, otros países han desarrollado importantes proyectos de instalaciones y grandes plantas. Aquí exponemos algunos de ellos, a modo de ejemplo.

Un proyecto representativo de instalación fotovoltaica en edificios es la llevada a cabo en la azotea de las oficinas de la Comisión Ejecutiva Río Lempa (CEL) en San Salvador (El Salvador). Se trata de una instalación de potencia total 24,57 kWp, formada por tres “arrays” de módulos de silicio monocristalino, policristalino y amorfo, de 8,19 kWp cada uno. Se encuentra en funcionamiento desde mediados de 2009 (16/07/2009). Como gran valor añadido, su producción y parámetros de rendimiento pueden consultarse en abierto por internet.
Actualmente, como proyectos de la CEL, se encuentran en fase de recepción de ofertas (el inicio de su construcción se prevé para julio-agosto de 2013) dos plantas, “Central 15 de Septiembre” de 14,2 MWp, y “Guajoyo” de 3,6 MWp, financiadas por el Banco de Desarrollo Alemán (KFW).

En Nicaragua, se encuentra ya en operación, desde febrero de 2013, una planta fotovoltaica en La Trinidad (Diriamba) de 1,38 MWp (2880 paneles), financiada casi en su totalidad (11,4 M$ de un total de 12M$) por el Gobierno de Japón.

En Panamá, se prevé la construcción en julio de 2013 de una planta de 2,4 MWp (11800 paneles) en el distrito de Parita, fruto de un proyecto impulsado por la Empresa Generadora de Energía Eléctrica (EGESA).
En Costa Rica, la Planta Fotovoltaica Parque Miravalles, en Guanacaste, fue inaugurada en noviembre de 2012. Su potencia instalada es de 1,01 MWp (4300 paneles de 235 Wp). El proyecto ha sido impulsado por el Instituto Costarricense de Electricidad (ICE) y financiado mediante una donación de 10M$ del Gobierno de Japón.

En Ecuador se encuentran en proyecto 15 centrales entre los años 2013 y 2014, con una potencia instalada total de 287,7 MWp y una inversión total de aproximadamente 800 M$, a razón de una inversión unitaria de 2,5-3 M$/MW. Un ejemplo de proyecto realizado, inaugurado el 29 de enero de 2013, es la Planta Solar Paragachi, de 1 MW de potencia aproximada (4160 paneles de 240Wp cada uno). Fue construida tras un acuerdo de Zigor Corporación y Valsolar, y estuvo dotada de una inversión de 3,5 M$. Se prevé que produzca una energía de 1472 MWh/año.

En Perú, las Centrales Fotovoltaicas en Tacna y Mariscal Nieto, en la región de Moquegua, tienen una potencia instalada de 20 MWp cada una. Fueron inauguradas el 11 de marzo de 2013 y se espera que cada una de ellas produzca alrededor de 50 000 MWh/año. Se trata de dos grandes construcciones del Grupo San José. Los proyectos fueron desarrollados gracias a un consorcio de Solar Pack y Gestamp Solar. La inversión total ha sido de 250 M$ por instalación.

También en Perú, el grupo T-Solar ha desarrollado los proyectos de las Plantas Solares “Repartición” (en La Joya), y “Majes” (en Caylloma), que suman una potencia instalada de 44 MW con los que se espera generar 80 000 MWh/año. Ambas fueron inauguradas el 27 de octubre de 2012. La construcción fue llevada a cabo por Isolux Corsán. La financiación ha sido obtenida gracias a las entidades OPIC (USA, 131 M$), FMO (Holanda, 131 M$) y Proparco (Francia, 14,6 M$).

Resumen del capítulo

En este capítulo hemos presentado los aspectos a tener en cuenta en las asociaciones de módulos fotovoltaicos, y las protecciones necesarias. A continuación hemos revisado brevemente los parámetros básicos para describir el funcionamiento de una instalación fotovoltaica conectada a la red eléctrica. Así, se han definido los distintos tipos de rendimientos y pérdidas que nos permitirán...
caracterizar la producción y detectar áreas de mejora. Por otro lado, se han descrito los criterios básicos de dimensionado de una instalación, en cuanto a generador, inversores y cableado. En último lugar, se han descrito algunos ejemplos de instalaciones realizadas en América Latina y Caribe.
Glosario

α: En una célula o panel solar, coeficiente de variación de la corriente de cortocircuito con la temperatura

β: En una célula o panel solar, coeficiente de variación de la tensión de circuito abierto con la temperatura

ξm: Constante relacionada con la conductividad térmica del módulo que puede calcularse en función de la superficie de la célula S y la Temperatura de Operación Nominal de la Célula TONC.

γ: En una célula o panel solar, coeficiente de variación de la potencia máxima con la temperatura.

Acceptancia: Ángulo de incidencia al que los sistemas ópticos solo pueden enfocar la luz que incide sobre ellos.

Agencia Estatal de Meteorología (AEMET): Entidad oficial española que se ocupa del estudio y difusión de información meteorológica en España.

Alta concentración: Concentraciones superiores a 100X.

Altitud solar (γs): Ángulo formado entre el horizonte y el Sol.

Angle of incidence (AOI): Se refiere al ángulo de incidencia de la radiación solar, sobre un plano determinado.

Ángulo solar horario (ω): Ángulo entre el meridiano del sol y el observador, medido sobre el ecuador celeste en horas.

Aplicaciones descentralizadas de la energía solar fotovoltaica: Sistemas de producción energética mediante energía solar fotovoltaica que no están conectados a la red energética convencional.

Armónicos: Componentes de una onda electromagnética diferentes de la frecuencia fundamental.

Asociación Española de Normalización y Certificación (AENOR): Organismo legalmente responsable del desarrollo y difusión de las normas técnicas en España.

Autodescarga: Proceso de pérdida de capacidad de una batería independiente del consumo efectuado por una carga.

Azimut solar (αs): Angulo formado entre el plano vertical que contiene la dirección del sol y el plano vertical que contiene la dirección Norte-Sur. Se mide respecto al sur en el hemisferio Norte y respecto al norte en el hemisferio Sur.
Baja concentración: Concentración geométrica en el intervalo $1 \leq X \leq 10$

Balance of systems: Componentes y partes, procedimientos o conceptos que intervienen en el funcionamiento de un sistema fotovoltaico exceptuando paneles, baterías, reguladores e inversores.

Balasto: Equipo eléctrico o electrónico que precisan las lámparas fluorescentes para el encendido y para adecuar las características eléctricas de la fuente de electricidad a las necesidades de la lámpara. Son pequeños convertidores.

Batería de plomo ácido: Sistema de acumulación de energía eléctrica fabricada con placas de metal que constituyen los electrodos, una disolución de ácido sulfúrico en agua denominada electrolito y el vaso que contiene los componentes citados.

Bomba centrífuga: Dispositivo que transforma energía mecánica en energía hidráulica mediante el movimiento de aspas.

Bomba de desplazamiento positivo: Dispositivo que transforma energía mecánica en energía hidráulica mediante el movimiento de un pistón.

c: Corrección temporal sobre el tiempo civil habitual, debida al horario de verano.

Campo de Paneles: Conjunto de todos los módulos FV que constituyen el sistema de generación de la instalación.

Capa antireflexiva (AR): Capa de material cuyo objetivo es reducir las pérdidas por reflexión superficial de una célula solar.

Capacidad (de energía solar instalada). Suma de las potencias pico de los paneles solares de una instalación, región, país etc.

Capacidad de la batería: Energía eléctrica usable que almacena una batería

Característica corriente-tensión (I-V): Posibles combinaciones de corriente y voltaje que pueden obtenerse de una célula en unas condiciones determinadas.

Carga: Dispositivo eléctrico o electrónico que suministra un determinado servicio y consume electricidad.

Célula de compuestos binarios: Célula fotovoltaica constituida por un compuesto binario, como puede ser el GaAs, CdTe, InP, etc.

Célula de compuestos ternarios: Célula fotovoltaica constituida por un compuesto ternario, como CulnSe2, CulnSs AlAsGa.

Célula de heterounión: Ver célula de materiales híbridos.

Célula de materiales híbridos: Célula fotovoltaica consistente en varias capas de materiales monocristalinos sobre las que se deposita un segundo material que puede ser de estructura poli (o micro) cristalina o amorfa.
Célula de Si Amorfo (Si-a): Célula fotovoltaica en las cuales las distancias interatómicas y las direcciones de los enlaces presentan dispersión con respecto a las de la estructura cristalina ordenada.

Célula de Si monocristalino (Si-m): Célula fotovoltaica crecida a partir de un único cristal, de manera que todo el material forma parte de la misma red cristalina.

Célula de Si Policristalino (Si-p) y/o multicristalino: Célula fotovoltaica cuya estructura está formada por multitud de monocristales, con orientaciones cristalográficas aleatorias.

Célula solar: Elemento fundamental en la conversión fotovoltaica, que se agrupa formando paneles solares.

Células de heterounión (HIT): Células solares fotovoltaicas que presentan láminas de silicio cristalino rodeadas de capas ultrafinas de Si-a.

CEM: Condiciones Estándar de Medida (1000 W/m² de irradiancia y 25 ºC de temperatura).

Ciclado: Número de veces que se carga y descarga una batería.

Coeficiente de temperatura de la potencia máxima de un módulo fotovoltaico (γ): expresado en W/ºC o en %/ºC, representa la potencia que pierde un módulo fotovoltaico por cada grado de aumento temperatura media que presentan sus células.

Comité Europeo de Normalización Electrotécnica (CENELEC): Organización responsabilizada por la Unión Europea de la normalización en el campo electrotécnico.

Concentración energética: Relación entre la radiación solar en W/m² que llega a la superficie de la célula, y la que llegaría si no existiesen elementos concentradores, por lo que esta podría definirse como la concentración efectiva.

Concentración geométrica (C): En un sistema de concentración solar, relación entre el área de apertura del colector y el área receptora activa.

Concentradores híbridos: Sistemas de concentración que integran elementos que funcionan por reflexión y por refracción.

Concentradores reflexivos: Sistemas de concentración que utilizan materiales reflexivos para concentrar la luz, normalmente espejos de vidrio o plástico, o distintas superficies tratadas con recubrimientos reflectantes y reflectores de aluminio.

Concentradores refractivos: Sistemas de concentración que utilizan lentes refractivas como elemento concentrador.

Contacto metálico posterior: Estructura metálica de la parte posterior de la célula que se ocupa de recoger la corriente eléctrica de una célula solar.
Convertidores de CC/CC: Dispositivos electrónicos capaces de transformar un cierto valor de tensión eléctrica en otro. Suelen ser capaces de encontrar el punto de máxima potencia de un generador solar.

Corriente de cortocircuito (I_{cc} o I_{sc}): Máxima corriente que produce un dispositivo bajo unas condiciones definidas de iluminación y temperatura, correspondientes a un voltaje igual a cero.

Corriente de descarga: Valor de la corriente eléctrica que se extrae de una batería.

Corriente de diodo (ID) o de oscuridad: En una célula solar, corriente debida al voltaje externo y que supone la recombinación de portadores.

Corriente en el punto de máxima potencia (I_{max}): Valor de la corriente para P_{max} en unas condiciones determinadas de iluminación y temperatura.

Corriente fotogenerada (IL): En una célula solar, corriente debida a la generación de portadores producida por la iluminación.

Corriente inversa de saturación del diodo: Corriente debida a la generación térmica de electrones y huecos y su difusión y recombinación en la unión p-n. Esta corriente no está generada por la luz que pueda incidir en la célula solar.

Curva de oscuridad: Parte de la curva I-V de un dispositivo fotovoltaico que se obtiene en ausencia de iluminación.

Declinación (δ): Ángulo de inclinación del eje terrestre Norte-Sur. Varía a lo largo del año en el rango comprendido entre $\pm23^\circ27'$.

Densidad energética de la baterías: Energía útil almacenada por una batería dividida entre su masa.

Descarga: Proceso por el cual una batería ve disminuida la energía que almacena.

Días de autonomía: Número de días que una instalación fotovoltaica puede hacer funcionar sus cargas aún sin recarga de las baterías.

Dimensionado: Modelo del tamaño o capacidad de los componentes de un sistema fotovoltaico para satisfacer ciertas condiciones específica de carga en un clima concreto.

Diodos de bloqueo: Diodos que se ocupan de evitar corrientes inversas desde la batería hasta el campo de paneles y/o proteger las ramas débiles o deterioradas.

Diodos de paso. Diodos que se colocan en paralelo en asociaciones de células FV en serie para limitar el número de células que se descargarian sobre una sola y evitar la formación de puntos calientes.

Diseño: Definición de los componentes y disposición de un sistema fotovoltaico.

Dopado: Introducción intencionada de impurezas donadoras o aceptadoras de electrones en un semiconductor.
Efecto Fotovoltaico: Efecto físico descubierto por Becquerel en 1839 al observar que ciertos materiales, al ser expuestos a la luz, eran capaces de producir una corriente eléctrica.

Eficiencia (η): Cociente entre la potencia que puede entregar la célula y la potencia de la radiación solar que incide sobre ella.

Eficiencia con respecto al área activa de célula: Relación entre la máxima potencia generada por el dispositivo y la cantidad de radiación solar incidente solamente en el área del dispositivo fotovoltaico que está expuesta a la luz. Las áreas sombreadas por los contactos o las rejillas de las células no estarían incluidas.

Eficiencia con respecto al área de célula: Relación entre la máxima potencia generada por el módulo, ignorando el espacio entre células y el marco del módulo.

Eficiencia con respecto al área total: Relación entre la máxima potencia generada por el dispositivo y la cantidad de radiación solar incidente en el dispositivo completo.

Eficiencia cuántica de un dispositivo (QE): Cociente entre el número de electrones extraídos del mismo y el número de fotones incidentes para cada valor de longitud de onda.

Eficiencia de carga de una batería: Relación entre la energía suministrada a una batería y la energía realmente utilizable.

Encapsulado: Conjunto de materiales que protegen a las células solares de un panel solar de los agentes atmosféricos que le puedan afectar cuando esté trabajando en la intemperie. Además mantienen unidos a los diferentes componentes del panel solar.

Energía solar fotovoltaica: Energía eléctrica producida a partir del efecto fotovoltaico.

Entidad Nacional de Acreditación (ENAC): Entidad designada por el estado español como Organismo Nacional de Acreditación, dotado de potestad pública para otorgar acreditaciones.

Estado de carga de la batería (SOC): Cantidad de carga disponible en un momento dado dividida entre la cantidad de carga disponible cuando la batería está completamente cargada.

Estructura de soporte: Componente de un sistema fotovoltaico encargado de sostener, orientar y anclar los paneles que componen un generador solar.

ET: Ecuación de tiempo. Relaciona el tiempo civil y el tiempo solar para una zona geográfica.

Factor de corrección de la excentricidad de la órbita terrestre (ε): Para un cierto día del año, es el cuadrado de la distancia entre la Tierra y el Sol dividida entre el cuadrado del valor medio anual de esa distancia. Se utiliza como corrección del valor de la irradiancia solar extraterrestre debida a la excentricidad de la órbita terrestre.

Factor de idealidad del diodo (m): Parámetro del modelado de un dispositivo solar que refleja la medida en que está se aleja del comportamiento de un diodo idealmente lineal.
Factor de llenado o fill factor (FF): Valor correspondiente al cociente entre P_{max} y el producto $I_{\text{sc}} \times V_{\text{oc}}$.

G: Irradiancia solar recibida en superficie. Su unidad de medida es W/m².

G_0: Irradiancia solar recibida fuera de la atmósfera. Su unidad de medida es igualmente W/m².

GAP (Eg): Ancho de la banda energética prohibida del material semiconductor.

Gasificación: Generación de H2 en las baterías de PI-ácido a causa de los procesos químicos que se producen durante la carga de la batería.

G_b: Irradiancia solar directa (W/m²).

G_d: Irradiación media diaria (Wh/m²/día) sobre una superficie horizontal.

G_{diff}: Irradiancia solar difusa (W/m²).

Generador solar: Conjunto de dispositivos fotovoltaicos (células o paneles) que suministran energía eléctrica a una instalación.

Horas de sol pico (HSP): Número medio de horas diarias en una superficie horizontal a una radiación de 1000 W/m².

Hueco: En un material semiconductor corresponde a la ausencia de un electrón por la ruptura de un enlace.

Instalación conectada a red: Instalación fotovoltaica que suministra energía eléctrica a la red eléctrica convencional.

International Electrotechnical Comision (IEC o CEI): Comisión electrotécnica internacional.

Inversores CC/CA: Dispositivos que transforman la corriente continua suministrada por la batería del SF en corriente alterna.

K_t: Índice de claridad.

Lámina delgada: Término genérico que se utiliza para materiales o dispositivos cuya característica fundamental es contener capas delgadas de silicio amorfo, CIS, TeCd u otros materiales.

Latitud (φ): Distancia angular entre el ecuador y un objeto a lo largo del meridiano del objeto en la localización geográfica considerada.

Lighting kit: Sistema fotovoltaico no conectado a la red eléctrica que se suministra al usuario con unos componentes predeterminados con características específicas.

LMT: Local Mean Time. Se refiere al Tiempo Civil.
Longitud (λ): Distancia angular entre un objeto y el meridiano de referencia considerado.

Longitud de referencia (λ₀): Ver longitud. Corresponde a la longitud del mediano de Greenwich (longitud cero).

m: Masa de aire relativa (AM, Air Mass). De uso común son las consideradas en el exterior de la atmósfera (AM0) y la masa de aire estándar de referencia para aplicaciones fotovoltaicas (AM1,5).

Malla de metalización: Estructura metálica de la parte frontal de la célula que se ocupa de recoger la corriente eléctrica de una célula solar.

Maximum Power Point Tracking (MPPT): Ver seguidor de máxima potencia.

Media concentración: Concentración geométrica en el intervalo 10< X < 100.

Minired: Sistema fotovoltaico no conectado a la red eléctrica convencional que suministra energía a varias viviendas o usuarios independientes.

Mismatch losses: Pérdida de la potencia generada en una asociación de dispositivos fotovoltaicos debida a la dispersión de los parámetros de las células.

Módulos CIS: Paneles fotovoltaicos que se suelen obtener por vaporizaciones de diseleniuro de cobre e indio (CuInSe2) sobre láminas de cristal.

Módulos de Silicio amorfo (Si-a): Paneles fotovoltaicos que se caracterizan por obtenerse mediante el depósito de grandes superficies de láminas delgadas de conductores y semiconductores sobre un substrato adecuado.

Panel solar: Agrupación de células solares fotovoltaicas en un dispositivo único que constituye el elemento generador de electricidad fotovoltaica en aplicaciones reales. Eventualmente un panel solar puede estar formado por una única célula solar.

Pérdidas de recombinación: Reducción de la corriente debida a procesos de recombinación de pares electrón-hueco.

Portadores de carga: Huecos y electrones que producen conducción eléctrica en un semiconductor.

Potencia máxima (P_{max}): Máxima potencia que producirá el dispositivo en unas condiciones determinadas de iluminación y temperatura.

Potencia nominal del inversor: Potencia de salida para el cual está diseñado un inversor.

Probabilidad de pérdida de carga (LLP del inglés loss-of-load probability): Valor estimado del déficit energético entre la demanda de energía a lo largo del tiempo de uso de la instalación fotovoltaica.

Profundidad de descarga máxima DOD: Máximo porcentaje de energía extraíble de una batería sin que se deteriore.
Recombinación de pares electrón-hueco: Encuentro de un electrón y un hueco con emisión de radiación.

Regulador de carga: Dispositivo que rige la carga y descarga de una batería.

Rendimiento: Potencia de salida dividida entre la potencia a la entrada de un dispositivo.

Respuesta espectral: Curva que refleja la energía generada por una célula solar a cada longitud de onda, relativa a la energía total incidente.

R_s: En el modelado de la curva I-V de un dispositivo solar, es una resistencia en serie que da cuenta de pérdidas de potencia debidas a cierto número de fenómenos denominados extrínsecos como las caídas de voltaje asociadas al movimiento de portadores desde el lugar en que se generan hasta los contactos (emisor, base, malla metálica, superficie de contacto), etc.

R_{sh}: En el modelado de la curva I-V de un dispositivo solar, es una resistencia en paralelo que da cuenta de pérdidas de potencia debidas a cierto número de fenómenos como por ejemplo la pérdida de corriente en los bordes de la célula hacia el marco del dispositivo, etc.

Seguidor de máxima potencia: Dispositivo que permite operar a un generador solar cerca de su punto de máxima potencia, ya sea para cargar baterías o para vender la energía a una red eléctrica.

Silicio cristalino: Término genérico que se utiliza para materiales o dispositivos cuya característica fundamental es contener silicio con estructura cristalina.

Silicio de grado metalúrgico: Silicio apropiado para ciertos usos industriales, de menor pureza que los silíceos de grado solar y semiconductor.

Silicio de grado semiconductor: Silicio apropiado para su uso en la industria microelectrónica y fotovoltaica. Es más puro que los silíceos de grado solar y metalúrgico.

Silicio de grado solar: Silicio de pureza apropiada para el uso en dispositivos fotovoltaicos, de menor pureza que el silicio de grado semiconductor y de mayor pureza que el silicio de grado metalúrgico.

Sistema de acondicionamiento de potencia: Dispositivo que se sitúa entre generadores de energía eléctrica, baterías y cargas para hacer compatibles las características eléctricas de cada tipo de dispositivo.

Sistema de concentración: Sistema fotovoltaico que incluye dispositivos ópticos que aumentan la radiación por unidad de área que reciben los paneles solares respecto a la que recibirían en caso de carecer de ellos.

Sistema fotovoltaico autónomo: Conjunto formado por generadores solares y otros componentes no conectados a la red eléctrica convencional y que suministra energía a ciertas cargas eléctricas. Puede tener otros componentes como baterías, inversores etc.

Sistemas fotovoltaicos: Conjunto formado por generadores solares y otros componentes cuya función es generar energía ya sea para inyectar en una red eléctrica, para consumir de modo inmediato o almacenar para su posterior consumo.
Sistemas híbridos: Conjunto de dispositivos para la generación de electricidad que incluyen generadores de diferentes tecnologías como paneles solares fotovoltaicos, generadores diesel, molinos eólicos, etc.

Sobrecarga: Carga de una batería sobre su capacidad nominal.

Solar Home Systems (SHS): Sistema fotovoltaico autónomo para una vivienda, de tamaño modesto y usualmente instalado en el medio rural.

Sulfatación: Proceso por el cual se acumula sulfato de plomo en los bornes de una batería de Pl-ácido.

Tecnología de híbrida: Generador fotovoltaico que incorpora en el mismo dispositivo silicio amorfo y microamorfo.

Tiempo de vida: Duración del uso de un dispositivo dentro de unos requerimientos establecidos.

TONC (Temperatura de operación nominal de la célula): Temperatura que alcanzarían las células solares para un nivel de irradiancia normal de 800 W/m², temperatura ambiente de 20°C, velocidad del viento de 1m/s.

Voltaje de circuito abierto (V_{ca} o V_{oc}): Máximo voltaje del dispositivo bajo unas condiciones determinadas de iluminación y temperatura, correspondientes a una corriente igual a cero.

Voltaje en el punto de máxima potencia (V_{max}): Es el valor de voltaje para P_{max} en unas condiciones determinadas de iluminación y temperatura.
Bibliografía

Zilles, R. Modelado de generadores fotovoltaicos. Efectos de la dispersión de parámetros. Tesis doctoral. ETS de Ingenieros de Telecomunicación, Madrid 1993
Índice de figuras

Ilustraciones

Ilustración 6. Estructura típica de la célula solar (izquierda) y principio de funcionamiento (derecha). 7
Ilustración 7. Curva característica típica I-V de una célula fotovoltaica ... 9
Ilustración 8. Esquema de la estructura atómica de un material monocristalino, policristalino y amorfo. ... 11
Ilustración 9: Sección transversal de la configuración convencional de un módulo fotovoltaico...........12
Ilustración 10. Imágenes de distintos tipos de módulos fotovoltaicos. .. 14
Ilustración 11. Esquema del conexionado en serie-paralelo de varias células fotovoltaicas (izquierda) y distintas curvas I-V obtenidas por la asociación de 36 células FV (derecha) ... 15
Ilustración 12. Influencia de las variaciones de irradiancia y temperatura en la característica I-V de un dispositivo fotovoltaico. .. 16
Ilustración 13. Efecto de un incremento de R_s (izquierda) y R_sh(derecha) en la característica I-V de un dispositivo FV...17
Ilustración 14. Comparación de las áreas que se tendrían en cuenta para el cálculo de la eficiencia con respecto al área total (izquierda), con respecto al área de célula (centro) y con respecto al área activa de célula (derecha) .. 21
Ilustración 15. Esquema del principio de la concentración FV ... 21
Ilustración 16. Esquema de distintas ópticas para concentradores fotovoltaicos. 22
Ilustración 17. Distribución espectral de la radiación solar. ... 26
Ilustración 18. Componentes de la radiación solar sobre un dispositivo fotovoltaico. 26
Ilustración 19: posición del sol respecto de un observador terrestre. FUENTE: The European Solar Radiation Atlas. .. 28
Ilustración 20. Mapas de irradiación global media diaria en Centroamérica y Sudamérica. FUENTE: NREL ... 29
Ilustración 21: Sistema fotovoltaico autónomo..35
Ilustración 22: A la derecha batería Pb-acido para uso en instalación fotovoltaica. A la izquierda batería de Pb-acido sin vaso ni electrólito...36
Ilustración 23: Esquema de la función de un inversor ...39
Ilustración 24: Rendimiento de un inversor ...39
Ilustración 25: Curva IV de generador solar, potencias máximas reales y potencias suministradas por un seguidor de máxima potencia...40
Ilustración 26: Linterna fotovoltaica desmontada a la izquierda y a la derecha otro modelo montado y con su correspondiente panel solar...42
Ilustración 27: Lámpara LED para sistema fotovoltaico ..43
Ilustración 28: A la izquierda, sistema de bombeo y almacenamiento a partir de un pozo. A la derecha esquema de bombas sumergibles: A la derecha bomba de desplazamiento positivo y a la izquierda bomba centrifuga, centro bomba flotante, abajo bomba de superficie43
Ilustración 29: Faro alimentado con energía solar y señal de tráfico..45
Ilustración 30: A la derecha, KIT fotovoltaico sin ensamblar. A la izquierda, Pequeño SHS...........50
Ilustración 31: ¿SHS o minired? ...52
Ilustración 32. Esquema del modo de funcionamiento de un diodo de paso62
Ilustración 33. Posición típica de los diodos de paso en un módulo de 36 células con dos cajas de conexiones (izquierda) o una caja de conexiones (derecha)..63
Ilustración 34. Principio de funcionamiento del diodo de paso en una rama de 18 células en serie con una célula parcialmente sombreada ...64
Ilustración 35. . Curva de iluminación y de oscuridad de un generador fotovoltaico indicando los flujos de corriente durante el día y la noche...65
Ilustración 36. Ejemplo de un campo fotovoltaico con ramas en paralelo y diodos de bloqueo65
Ilustración 37. Gráfico de rendimiento específico de la instalación en azotea 24,6 kWp de CEL (San Salvador). ..70
Ilustración 38. Planta Fotovoltaica 1,38 MWp en Diriamba (Nicaragua).70
Ilustración 39. Planta Solar Miravalles 1,01MW. FUENTE: SmartGridCostaRica.........................71

Páginas Web

http://www.enac.es/web/enac/inicio
http://catalogx.ensmp.fr/Files/ESRA11res.pdf